分析 求得拋物線的頂點(diǎn)坐標(biāo)為(-m,m2+4m+6),根據(jù)根與系數(shù)的關(guān)系得到α+β=-2m,αβ=-(4m+6),求得拋物線與x軸的兩個(gè)交點(diǎn)和它的頂點(diǎn)所組成的三角形面積=12•(m2+4m+6)•2√(m+2)2+2=[(m+2)2+2]•√(m+2)2+2,于是得到結(jié)論.
解答 解:y=-x2-2mx+4m+6=-(x+m)2+m2+4m+6,則拋物線的頂點(diǎn)坐標(biāo)為(-m,m2+4m+6),
設(shè)拋物線與x軸兩交點(diǎn)的坐標(biāo)為(α,0),(β,0),則α、β為方程-x2-2mx+4m+6=0的兩實(shí)數(shù)解,
所以α+β=-2m,αβ=-(4m+6),則|α-β|=\sqrt{(α+β)^{2}-4αβ}=\sqrt{4{m}^{2}+4(4m+6)}=2\sqrt{(m+2)^{2}+2},
所以拋物線與x軸的兩個(gè)交點(diǎn)和它的頂點(diǎn)所組成的三角形面積=\frac{1}{2}•(m2+4m+6)•2\sqrt{(m+2)^{2}+2}=[(m+2)2+2]•\sqrt{(m+2)^{2}+2},
因?yàn)閙=-2時(shí),(m+2)2+2有最小值2,\sqrt{(m+2)^{2}+2}也有最小值\sqrt{2},
所以拋物線與x軸的兩個(gè)交點(diǎn)和它的頂點(diǎn)所組成的三角形面積的最小值為2\sqrt{2}.
故答案為:-2,2\sqrt{2}.
點(diǎn)評(píng) 本題考查了拋物線與x軸的交點(diǎn),二次函數(shù)的性質(zhì),三角形的面積的計(jì)算,求最小值問(wèn)題,能確定代數(shù)式的最小值是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3,-2 | B. | -3,2 | C. | 3,2 | D. | -3,-2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k>1 | B. | k>\frac{1}{3} | C. | \frac{1}{3}<k<1 | D. | k<\frac{1}{3} |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com