【題目】在我市“青山綠水”行動中,某村計劃對面積為3640的山坡進行綠化,經(jīng)投標由甲,乙兩個工程隊來完成.已知甲隊每天能完成綠化的面積是乙隊每天完能完成綠化的面積的2倍,如果兩隊各自獨立完成面積為400區(qū)域的綠化時,甲隊比乙隊少用4天.
(1)求甲、乙兩工程隊每天各能完成多少面積的綠化;
(2)若甲隊每天綠化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,該村要使這次綠化的總費用不過40萬元,則至少應安排乙工程隊綠化多少天?
【答案】(1)甲隊每天能完成的綠化面積為100m2, 乙隊每天能完成的綠化面積為50m2.(2)至少應安排乙工程隊綠化37天.
【解析】
(1)設乙工程隊每天能完成綠化的面積是xm2,根據(jù)題意列出方程,求解即可;
(2)設甲工程隊施工a天,乙工程隊施工b天剛好完成綠化任務,由題意得:100a+50b=3640,則a=,根據(jù)題意得出1.2×+0.5b≤40,解不等式即可.
解.(1)設乙隊每天能完成的綠化面積為xm2,則甲隊每天能完成的綠化面積為2xm2,
根據(jù)題意得,
解得,
經(jīng)檢驗:x=50是原方程的解,則2x=100,
答:甲隊每天能完成的綠化面積為100m2, 乙隊每天能完成的綠化面積為50m2;
(2)設甲工程隊施工a天,乙工程隊施工b天剛好完成綠化任務,由題意得:
100a+50b=3640,
則a=,
根據(jù)題意得:1.2×+0.5b≤40,
解得:b≥,
答:至少應安排乙工程隊綠化37天.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c和直線y=kx+b都經(jīng)過點(﹣1,0),拋物線的對稱軸為x=1,那么下列說法正確的是( )
A.ac>0
B.b2﹣4ac<0
C.k=2a+c
D.x=4是ax2+(b﹣k)x+c<b的解
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉過程中,當∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點O為坐標原點,AB所在直線為x軸建立的平面直角坐標系中,將△ABC繞點B順時針旋轉,使點A旋轉至y軸的正半軸上的點A'處,若AO=OB=2,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學決定開展課后服務活動,學校就“你最想開展哪種課后服務項目”問題進行了隨機問卷調(diào)查,調(diào)查分為四個類別:.舞蹈;.繪畫與書法;.球類;.不想?yún)⒓樱F(xiàn)根據(jù)調(diào)查結果整理并繪制成如下不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖,請結合圖中所給信息解答下列問題:
(1)這次統(tǒng)計共抽查了_________名學生,請補全條形統(tǒng)計圖;
(2)該校共有600名學生,根據(jù)以上信息,請你估計全校學生中想?yún)⒓?/span>類活動的人數(shù);
(3)若甲、乙兩名同學,各自從三個項目中隨機選一個參加,請用列表或畫樹狀圖的方法求他們選中同一項目的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一次函數(shù)ymxn與反比例函數(shù)y同時經(jīng)過點P(x,y)則稱二次函數(shù)ymx2nxk為一次函數(shù)與反比例函數(shù)的“共享函數(shù)”,稱點P為共享點.
(1)判斷y2x1與y是否存在“共享函數(shù)”,如果存在,請求出“共享點”.如果不存在,請說明理由;
(2)已知:整數(shù)m,n,t滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y存在“共享函數(shù)”y=(m+t)x2+(10mt)x2020,求m的值.
(3)若一次函數(shù)yxm和反比例函數(shù)y在自變量x的值滿足mxm6的情況下,其“共享函數(shù)”的最小值為3,求其“共享函數(shù)”的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校計劃購買一批學習筆記本,已知1本甲種筆記本和3本乙種筆記本共需26元;3本甲種筆記本和2本乙種筆記本共需29元.
(1)求購買一本甲種筆記本和一本乙種筆記本各需多少元;
(2)學校計劃購進這兩種筆記本共70本,并且甲種筆記本的數(shù)量不超過乙種筆記本數(shù)量的2倍,若設學校計劃購進甲種比價本x本.
①填寫下表:
甲種筆記本數(shù)量 | 10 |
|
乙種筆記本數(shù)量 |
| 30 |
所需總費用 |
|
|
②寫出購買這兩種筆記本所需要費用y(元)關于x的函數(shù)關系式;請設計出最省錢的購買方案,并說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com