【題目】在我市“青山綠水”行動(dòng)中,某村計(jì)劃對(duì)面積為3640的山坡進(jìn)行綠化,經(jīng)投標(biāo)由甲,乙兩個(gè)工程隊(duì)來完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天完能完成綠化的面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為400區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;
(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬元,乙隊(duì)每天綠化費(fèi)用為0.5萬元,該村要使這次綠化的總費(fèi)用不過40萬元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?
【答案】(1)甲隊(duì)每天能完成的綠化面積為100m2, 乙隊(duì)每天能完成的綠化面積為50m2.(2)至少應(yīng)安排乙工程隊(duì)綠化37天.
【解析】
(1)設(shè)乙工程隊(duì)每天能完成綠化的面積是xm2,根據(jù)題意列出方程,求解即可;
(2)設(shè)甲工程隊(duì)施工a天,乙工程隊(duì)施工b天剛好完成綠化任務(wù),由題意得:100a+50b=3640,則a=,根據(jù)題意得出1.2×+0.5b≤40,解不等式即可.
解.(1)設(shè)乙隊(duì)每天能完成的綠化面積為xm2,則甲隊(duì)每天能完成的綠化面積為2xm2,
根據(jù)題意得,
解得,
經(jīng)檢驗(yàn):x=50是原方程的解,則2x=100,
答:甲隊(duì)每天能完成的綠化面積為100m2, 乙隊(duì)每天能完成的綠化面積為50m2;
(2)設(shè)甲工程隊(duì)施工a天,乙工程隊(duì)施工b天剛好完成綠化任務(wù),由題意得:
100a+50b=3640,
則a=,
根據(jù)題意得:1.2×+0.5b≤40,
解得:b≥,
答:至少應(yīng)安排乙工程隊(duì)綠化37天.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c和直線y=kx+b都經(jīng)過點(diǎn)(﹣1,0),拋物線的對(duì)稱軸為x=1,那么下列說法正確的是( 。
A.ac>0
B.b2﹣4ac<0
C.k=2a+c
D.x=4是ax2+(b﹣k)x+c<b的解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中.,,,點(diǎn)是的中點(diǎn),點(diǎn)是邊上一動(dòng)點(diǎn),沿所在直線把翻折到的位置,交于點(diǎn).若為直角三角形,則的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的點(diǎn)A'處,若AO=OB=2,則圖中陰影部分面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)決定開展課后服務(wù)活動(dòng),學(xué)校就“你最想開展哪種課后服務(wù)項(xiàng)目”問題進(jìn)行了隨機(jī)問卷調(diào)查,調(diào)查分為四個(gè)類別:.舞蹈;.繪畫與書法;.球類;.不想?yún)⒓樱F(xiàn)根據(jù)調(diào)查結(jié)果整理并繪制成如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)這次統(tǒng)計(jì)共抽查了_________名學(xué)生,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校共有600名學(xué)生,根據(jù)以上信息,請(qǐng)你估計(jì)全校學(xué)生中想?yún)⒓?/span>類活動(dòng)的人數(shù);
(3)若甲、乙兩名同學(xué),各自從三個(gè)項(xiàng)目中隨機(jī)選一個(gè)參加,請(qǐng)用列表或畫樹狀圖的方法求他們選中同一項(xiàng)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)ymxn與反比例函數(shù)y同時(shí)經(jīng)過點(diǎn)P(x,y)則稱二次函數(shù)ymx2nxk為一次函數(shù)與反比例函數(shù)的“共享函數(shù)”,稱點(diǎn)P為共享點(diǎn).
(1)判斷y2x1與y是否存在“共享函數(shù)”,如果存在,請(qǐng)求出“共享點(diǎn)”.如果不存在,請(qǐng)說明理由;
(2)已知:整數(shù)m,n,t滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y存在“共享函數(shù)”y=(m+t)x2+(10mt)x2020,求m的值.
(3)若一次函數(shù)yxm和反比例函數(shù)y在自變量x的值滿足mxm6的情況下,其“共享函數(shù)”的最小值為3,求其“共享函數(shù)”的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)活動(dòng)小組為測(cè)量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點(diǎn)C出發(fā),沿斜面坡度 的斜坡CD前進(jìn)4米到達(dá)點(diǎn)D,在點(diǎn)D處安置測(cè)角儀,測(cè)得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計(jì)算結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃購(gòu)買一批學(xué)習(xí)筆記本,已知1本甲種筆記本和3本乙種筆記本共需26元;3本甲種筆記本和2本乙種筆記本共需29元.
(1)求購(gòu)買一本甲種筆記本和一本乙種筆記本各需多少元;
(2)學(xué)校計(jì)劃購(gòu)進(jìn)這兩種筆記本共70本,并且甲種筆記本的數(shù)量不超過乙種筆記本數(shù)量的2倍,若設(shè)學(xué)校計(jì)劃購(gòu)進(jìn)甲種比價(jià)本x本.
①填寫下表:
甲種筆記本數(shù)量 | 10 |
|
乙種筆記本數(shù)量 |
| 30 |
所需總費(fèi)用 |
|
|
②寫出購(gòu)買這兩種筆記本所需要費(fèi)用y(元)關(guān)于x的函數(shù)關(guān)系式;請(qǐng)?jiān)O(shè)計(jì)出最省錢的購(gòu)買方案,并說明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com