【題目】下列圖案中既是中心對稱圖形,又是軸對稱圖形的是( 。
A.
B.
C.
D.
【答案】A
【解析】解:A、是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)正確;
B、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;
C、不是軸對稱圖形,因?yàn)檎也坏饺魏芜@樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義,是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;
D、是軸對稱圖形,不是中心對稱圖形,因?yàn)檎也坏饺魏芜@樣的一點(diǎn),旋轉(zhuǎn)180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項(xiàng)錯(cuò)誤.
故選:A.
【考點(diǎn)精析】利用中心對稱及中心對稱圖形對題目進(jìn)行判斷即可得到答案,需要熟知如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對稱;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對稱圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】省教育廳決定在全省中小學(xué)開展“關(guān)注校車、關(guān)愛學(xué)生”為主題的交通安全教育宣傳周活動(dòng),某中學(xué)為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查了部分學(xué)生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖(如圖所示),請根據(jù)圖中提供的信息,解答下列問題.
(1)m= %,這次共抽取 名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;
(2)在這次抽樣調(diào)查中,采用哪種上學(xué)方式的人數(shù)最多?
(3)如果該校共有1500名學(xué)生,請你估計(jì)該校騎自行車上學(xué)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上的一點(diǎn),F(xiàn)是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長為32cm,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)a<0,則下列事件中是必然事件的是( 。
A. a3>0B. 3a>0C. a+3<0D. a﹣3<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,正方形ABCD的邊長為4,點(diǎn)E是對角線BD延長線上一點(diǎn),AE=BD.將△ABE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(0°<α<360°)得到△AB′E′,點(diǎn)B、E的對應(yīng)點(diǎn)分別為B′、E′.
(1)如圖1,當(dāng)α=30°時(shí),求證:B′C=DE;
(2)連接B′E、DE′,當(dāng)B′E=DE′時(shí),請用圖2求α的值;
(3)如圖3,點(diǎn)P為AB的中點(diǎn),點(diǎn)Q為線段B′E′上任意一點(diǎn),試探究,在此旋轉(zhuǎn)過程中,線段PQ長度的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在3張正面分別寫有數(shù)字﹣2,﹣1,0的卡片,它們的背面完全相同,現(xiàn)將這3張卡片背面朝上洗勻.
(1)從中任意抽取一張卡片,則所抽卡片上數(shù)字的絕對值不大于1的概率是 ;
(2)先從中任意抽取一張卡片,以其正面數(shù)字作為a的值,然后再從剩余的卡片隨機(jī)抽一張,以其正面的數(shù)字作為b的值,請用列表法或畫樹狀圖法,求點(diǎn)Q(a,b)在第三象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把方程3x2﹣1=4x化為一般形式是: , 其一次項(xiàng)系數(shù)是 , 常數(shù)項(xiàng)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com