如圖,直線分別交x軸、y軸于A、B兩點(diǎn),線段AB的垂直平分線分別交x軸、y軸于C、D兩點(diǎn).
(1)求點(diǎn)C的坐標(biāo);
(2)求△BCD的面積.

【答案】分析:(1)由直線y=-x+8,分別交x軸、y軸于A、B兩點(diǎn),即可求得點(diǎn)A與B的坐標(biāo),即可得OA,OB,由勾股定理即可求得AB的長(zhǎng),由CD是線段AB的垂直平分線,可求得AE與BE的長(zhǎng),易證得△AOB∽△AEC,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得AC的長(zhǎng),繼而求得點(diǎn)C的坐標(biāo);
(2)易證得△AOB∽△DEB,由相似三角形的對(duì)應(yīng)邊成比例,即可求得BD的長(zhǎng),又由S△BCD=BD•OC,即可求得△BCD的面積.
解答:解:(1)∵直線y=-x+8,分別交x軸、y軸于A、B兩點(diǎn),
當(dāng)x=0時(shí),y=8;當(dāng)y=0時(shí),x=6.
∴OA=6,OB=8.
在Rt△AOB中,AB==10,
∵CD是線段AB的垂直平分線,
∴AE=BE=5.
∵∠OAB=∠CAE,∠AOB=∠AEC=90°,
∴△AOB∽△AEC,

,
∴AC=
∴OC=AC-OA=,
∴點(diǎn)C的坐標(biāo)為(-,0);

(2)∵∠ABO=∠DBE,∠AOB=∠BED=90°,
∴△AOB∽△DEB,
,

∴BD=,
∴S△BCD=BD•OC=××=
點(diǎn)評(píng):此題考查了相似三角形的判定與性質(zhì)、點(diǎn)與一次函數(shù)的性質(zhì)、勾股定理以及線段垂直平分線的性質(zhì).此題難度較大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,直線分別交x軸、y軸于點(diǎn)A(-4,0),C,點(diǎn)P(2,m)是直線AC與雙精英家教網(wǎng)曲線y=
kx
在第一象限內(nèi)的交點(diǎn),PB⊥x軸,垂足為點(diǎn)B,△APB的面積為6.
(1)求m值;
(2)求兩個(gè)函數(shù)的解析式;
(3)在第一象限內(nèi)x為何值時(shí)一次函數(shù)大于反比例函數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l分別交x軸、y軸于A、B兩點(diǎn),且A(3
3
,0)
,∠OAB=30°,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),同時(shí)到達(dá)A點(diǎn),運(yùn)動(dòng)停止,點(diǎn)Q沿線段OA運(yùn)動(dòng),速度為每秒
3
個(gè)單位長(zhǎng)度,點(diǎn)P沿路線O→B→A運(yùn)動(dòng).
(1)求直線l的解析式;
(2)設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t(秒),△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式.
(3)在(2)中,若t>1時(shí)有S=
3
3
2
,求出此時(shí)P點(diǎn)的坐標(biāo),并直接寫(xiě)出以點(diǎn)O、P、Q為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=x-1分別交x軸、反比例函數(shù)y=
kx
的圖象于點(diǎn)A、B,若OB2-AB2=5,則k的值是
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市順義區(qū)李橋中學(xué)九年級(jí)(上)第三次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,直線分別交x軸、y軸于B、A兩點(diǎn),拋物線L:y=ax2+bx+c的頂點(diǎn)G在x軸上,且過(guò)(0,4)和(4,4)兩點(diǎn).
(1)求拋物線L的解析式;
(2)拋物線L上是否存在這樣的點(diǎn)C,使得四邊形ABGC是以BG為底邊的梯形,若存在,請(qǐng)求出C點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)將拋物線L沿x軸平行移動(dòng)得拋物線L1,其頂點(diǎn)為P,同時(shí)將△PAB沿直線AB翻折得到△DAB,使點(diǎn)D落在拋物線L1上.試問(wèn)這樣的拋物線L1是否存在,若存在,求出L1對(duì)應(yīng)的函數(shù)關(guān)系式,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•甘孜州)如圖,直線y=x+1分別交x軸,y軸于點(diǎn)A,C,點(diǎn)P是直線AC與雙曲線y=在第一象限內(nèi)的交點(diǎn),PB⊥x軸,垂足為點(diǎn)B,△APB的面積為4.
(1)求點(diǎn)P的坐標(biāo);
(2)求雙曲線的解析式及直線與雙曲線另一交點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案