【題目】△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長(zhǎng)為(
A.42
B.32
C.42 或 32
D.37 或 33

【答案】C
【解析】解:此題應(yīng)分兩種情況說明:(1)當(dāng)△ABC為銳角三角形時(shí),在Rt△ABD中, BD= = =9,
在Rt△ACD中,
CD= = =5,
∴BC=5+9=14,
∴△ABC的周長(zhǎng)為:15+13+14=42;(2)當(dāng)△ABC為鈍角三角形時(shí),
BC=BD﹣CD=9﹣5=4.
∴△ABC的周長(zhǎng)為:15+13+4=32;
故選:C.

分兩種情況進(jìn)行討論:(1)當(dāng)△ABC為銳角三角形時(shí),在Rt△ABD和Rt△ACD中,運(yùn)用勾股定理可將BD和CD的長(zhǎng)求出,兩者相加即為BC的長(zhǎng),從而可將△ABC的周長(zhǎng)求出;(2)當(dāng)△ABC為鈍角三角形時(shí),求出BC的長(zhǎng),從而可將△ABC的周長(zhǎng)求出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】⊙表示一種新運(yùn)算符號(hào)。已知23=9,72=1535=25。按此規(guī)律計(jì)算:164。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在山區(qū)建設(shè)公路時(shí),時(shí)常要打通一條隧道,就能縮短路程,其中蘊(yùn)含的數(shù)學(xué)道理是(

A. 兩點(diǎn)之間,線段最短 B. 兩點(diǎn)確定一條直線

C. 過一點(diǎn),有無數(shù)條直線 D. 連接兩點(diǎn)之間的線段的長(zhǎng)度是兩點(diǎn)間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程(x+1)24的解是( 。

A.x12x2=﹣2B.x13,x2=﹣3C.x11,x2=﹣3D.x11x2=﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上有三個(gè)點(diǎn)A、BC(如圖).請(qǐng)回答:

1寫出數(shù)軸上與點(diǎn)B相距5個(gè)單位的點(diǎn)M所表示的數(shù)為 ;

2在數(shù)軸上表示:將點(diǎn)C向左移動(dòng)6個(gè)單位到達(dá)點(diǎn)D,點(diǎn)A的相反數(shù)為點(diǎn)E,并用號(hào)把B、D、E三點(diǎn)所表示的數(shù)連接起來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是1個(gè)直角三角形和2個(gè)小正方形,直角三角形的三條邊長(zhǎng)分別是a、bc,其中ab是直角邊.2個(gè)小正方形的邊長(zhǎng)分別是a、b

14個(gè)完全一樣的直角三角形和2個(gè)小正方形構(gòu)成一個(gè)大正方形(如圖②).用兩種不同的方法列代數(shù)式表示圖②中的大正方形面積:方法一_______;方法二:_____;

2觀察圖②,試寫出(a+b)2a2,2ab,b2這四個(gè)代數(shù)式之間的等量關(guān)系,為___ ____;

3利用你發(fā)現(xiàn)的結(jié)論,求:9922+16×992+64的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用網(wǎng)格畫圖:

1過點(diǎn)C畫AB的平行線CD;

2過點(diǎn)C畫AB的垂線,垂足為E;

3線段CE的長(zhǎng)度是點(diǎn)C到直線_______的距離;

4連接CA、CB,在線段CA、CB、CE中,線段_______最短,理由:_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2x+y=1000,則代數(shù)式2016﹣4x﹣2y的值為(
A.16
B.50
C.100
D.1016

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若規(guī)定收入為“+”,那么﹣50元表示(
A.收入了50元
B.支出了50元
C.沒有收入也沒有支出
D.收入了100元

查看答案和解析>>

同步練習(xí)冊(cè)答案