已知:如圖13,等腰△ABC中,底邊BC=12,高AD=6.
(1)在△ABC內(nèi)作矩形EFGH,使F、G在BC上,E、H分別在AB、AC上,且長是寬的2倍.求矩形EFGH的面積.
(2)在(1)的基礎(chǔ)上,再作第二個矩形,使其兩個頂點(diǎn)在EH上,另外兩個頂點(diǎn)分別在AB、AC上,且長是寬的2倍.則第二個矩形的面積為 ;
(3)在(2)的基礎(chǔ)上,再作第三個矩形,使其兩個頂點(diǎn)在第二個矩形的邊上,另外兩個頂點(diǎn)分別在AB、AC上,且長是寬的2倍.則第三個矩形的面積為 ;
(4)按照這樣的方式做下去,根據(jù)上述計(jì)算猜想第四個矩形的面積為 ;第個矩形的面積為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010年浙江省初中畢業(yè)生學(xué)業(yè)考試模擬試卷數(shù)學(xué)卷 題型:解答題
(滿分l2分)數(shù)學(xué)課上,同學(xué)們探究下面命題的正確性:頂角為36°的等腰三角形 具有一種特性,即經(jīng)過它某一頂點(diǎn)的一條直線可把它分成兩個小等腰三角形.為此,請你解答問題(1).
(1)已知:如圖①,在△ABC中,AB=AC,∠A=36°,直線BD平分∠ABC交AC于點(diǎn)D.求證:△ABD與△DBC都是等腰三角形;
(2)在證明了該命題后,小穎發(fā)現(xiàn):如圖8—13②和③的等腰三角形也具有這種特性.請你在圖②、圖③中分別畫出一條直線,把它們分成兩個小等腰三角形,并在圖中標(biāo)出所畫等腰三角形兩個底角的度數(shù);
(3)接著,小穎又發(fā)現(xiàn):直角三角形和一些非等腰三角形也具有這樣的特性,如:直角三角形斜邊上的中線可把它分成兩個等腰三角形.請你畫出兩個具有這種特性的三角形的示意圖,并在圖中標(biāo)出三角形各內(nèi)角的度數(shù).(要求畫出的兩個三角形不相似,而且既不是等腰三角形也不是直角三角形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖13,等腰△ABC中,底邊BC=12,高AD=6.
(1)在△ABC內(nèi)作矩形EFGH,使F、G在BC上,E、H分別在AB、AC上,且長是寬的2倍.求矩形EFGH的面積.
(2)在(1)的基礎(chǔ)上,再作第二個矩形,使其兩個頂點(diǎn)在EH上,另外兩個頂點(diǎn)分別在AB、AC上,且長是寬的2倍.則第二個矩形的面積為 ;
(3)在(2)的基礎(chǔ)上,再作第三個矩形,使其兩個頂點(diǎn)在第二個矩形的邊上,另外兩個頂點(diǎn)分別在AB、AC上,且長是寬的2倍.則第三個矩形的面積為 ;
(4)按照這樣的方式做下去,根據(jù)上述計(jì)算猜想第四個矩形的面積為 ;第個矩形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖13,等腰△ABC中,底邊BC=12,高AD=6.
(1)在△ABC內(nèi)作矩形EFGH,使F、G在BC上,E、H分別在AB、AC上,且長是寬的2倍.求矩形EFGH的面積.
(2)在(1)的基礎(chǔ)上,再作第二個矩形,使其兩個頂點(diǎn)在EH上,另外兩個頂點(diǎn)分別在AB、AC上,且長是寬的2倍.則第二個矩形的面積為 ;
(3)在(2)的基礎(chǔ)上,再作第三個矩形,使其兩個頂點(diǎn)在第二個矩形的邊上,另外兩個頂點(diǎn)分別在AB、AC上,且長是寬的2倍.則第三個矩形的面積為 ;
(4)按照這樣的方式做下去,根據(jù)上述計(jì)算猜想第四個矩形的面積為 ;第個矩形的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com