【題目】如圖,ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過點(diǎn)D作DEAC分別交AC、AB的延長線于點(diǎn)E、F.

(1)求證:EF是的切線;

(2)若AC=4,CE=2,求的長度.(結(jié)果保留

【答案】(1)證明見解析 (2)

【解析】

(1)連接OD,由OA=OD知∠OAD=ODA,由AD平分∠EAF知∠DAE=DAO,據(jù)此可得∠DAE=ADO,繼而知ODAE,根據(jù)AEEF即可得證;(2)作OGAE,知AG=CG==2,證四邊形ODEG是矩形得OA=OB=OD=CG+CE=4,再證ADE∽△ABD,據(jù)此得出BD的長及∠BAD的度數(shù),利用弧長公式可得答案.

1)如圖,連接,

,

,

平分,

,

,

,

的切線;

(2)如圖,作于點(diǎn),連接,

,,

四邊形是矩形,

,,

,

,

,即,

,

中,,

中,,

,

的長度為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、BC的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+mx2m4m0).

1)證明:該拋物線與x軸總有兩個(gè)不同的交點(diǎn);

2)設(shè)該拋物線與x軸的兩個(gè)交點(diǎn)分別為A,B(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,AB,C三點(diǎn)都在P上.

試判斷:不論m取任何正數(shù),P是否經(jīng)過y軸上某個(gè)定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說明理由;

若點(diǎn)C關(guān)于直線x的對稱點(diǎn)為點(diǎn)E,點(diǎn)D01),連接BE,BD,DE,△BDE的周長記為l,⊙P的半徑記為r,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖直線y=x﹣1與坐標(biāo)軸交于A,B兩點(diǎn),點(diǎn)P是曲線y=x>0)上一點(diǎn),PAB是以APB=90°的等腰三角形,k= _________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯(cuò)誤的是  

A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次

D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB垂直弦CD,E為BC弧上一點(diǎn),下列結(jié)論:①∠1=∠2;②∠3=2∠4;③∠3+∠5=180°,其中正確的是( )

A. ①③ B. ②③

C. ①②③ D. ①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).對稱軸為直線,點(diǎn)在拋物線上.

(1)求直線的解析式;

(2)為直線下方拋物線上的一點(diǎn),連接、.當(dāng)的面積最大時(shí),在直線上取一點(diǎn),過軸的垂線,垂足為點(diǎn),連接.若時(shí),求的值;

(3)將拋物線沿軸正方向平移得到新拋物線,經(jīng)過原點(diǎn)軸的另一個(gè)交點(diǎn)為.設(shè)是拋物線上任意一點(diǎn),點(diǎn)在直線上,能否成為以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若能,直接寫出點(diǎn)的坐標(biāo).若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的不斷提高旅游已成為人們的一種生活時(shí)尚 開發(fā)新的旅游項(xiàng)目,我市對某山區(qū)進(jìn)行調(diào)查,發(fā)現(xiàn)一瀑布為測量它的高度, 量人員在瀑布的對面山上 D 點(diǎn)處測得瀑布頂端 A 點(diǎn)的仰角是 30°,測得瀑布底端 B 點(diǎn)的俯角是 10°,AB 與水平面垂直.又在瀑布下的水平面測得 CG=27m, GF=17.6m(注:C、G、F 三點(diǎn)在同一直線上,CFAB 于點(diǎn) F).斜坡 CD=20m, 坡角∠ECD=40°.求瀑布 AB 的高度.(參考數(shù)據(jù):≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) P(x,y)在第一象限,且 x+y=12,點(diǎn) A(10,0)在 x 軸上,當(dāng)△OPA 為直角三角形時(shí),點(diǎn) P 的坐標(biāo)為_______

查看答案和解析>>

同步練習(xí)冊答案