【題目】如圖,在矩形ABCD中,AB:BC=3:5,點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn)(不與點(diǎn)B,D重合),將矩形沿過(guò)點(diǎn)E的直線MN折疊,使得點(diǎn)A,B的對(duì)應(yīng)點(diǎn)G,F分別在直線AD與BC上,當(dāng)△DEF為直角三角形時(shí),CN:BN的值為______.

【答案】

【解析】

因?yàn)辄c(diǎn)A,B的對(duì)應(yīng)點(diǎn)G,F分別在直線AD與BC上,所以分兩種情況討論, 當(dāng)∠EFD=90°時(shí),證明△EFN∽△FDC,設(shè)CD=5a,根據(jù)比例式表示出CN,BN即可;當(dāng)∠EDF=90°時(shí),證明△FCD∽△DCB,設(shè)CD=3a, 根據(jù)比例式表示出CN,BN即可.

解:分兩種情況

當(dāng)∠EFD=90°時(shí),如下圖,

∵∠EFN=∠C=90°,易證∠EFN=∠FDC,

∴△EFN∽△FDC,

設(shè)CD=5a,由題可知,CF=3a,

,∴BC=,

∴BN=NF=,

當(dāng)∠EDF=90°時(shí),如下圖,

同理易證:△FCD∽△DCB,

設(shè)CD=3a,則BC=5a,CF=

∴BF=5a+,

∴BN=,NC=,

綜上, CN:BN的值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于點(diǎn)A,過(guò)點(diǎn)AO的平行線交雙曲線于點(diǎn)B,連接AB并延長(zhǎng)與y軸交于點(diǎn),則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+2x+3x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過(guò)Cx軸于E(4,0).

(1)寫出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PFx軸于F,設(shè)四邊形OFPC的面積為S,求Sx之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Qx軸的正半軸上運(yùn)動(dòng),過(guò)Qy軸的平行線,交直線lM,交拋物線于N,連接CN,將CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小紅同學(xué)用儀器測(cè)量一棵大樹(shù)AB的高度,在C處測(cè)得ADG=30°,在E處測(cè)得AFG=60°,CE=8米,儀器高度CD=1.5米,求這棵樹(shù)AB的高度(結(jié)果保留兩位有效數(shù)字,≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)D,交拋物線于點(diǎn)C.

(1)B點(diǎn)坐標(biāo)為  ,并求拋物線的解析式;

(2)求線段PC長(zhǎng)的最大值;

(3)若PAC為直角三角形,直接寫出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)如圖,在矩形紙片ABCD中,AB=4,AD=12,將矩形紙片折疊,使點(diǎn)C落在AD邊上的點(diǎn)M處,折痕為PE,此時(shí)PD=3.

(1)求MP的值;

(2)在AB邊上有一個(gè)動(dòng)點(diǎn)F,且不與點(diǎn)A,B重合.當(dāng)AF等于多少時(shí),MEF的周長(zhǎng)最?

(3)若點(diǎn)G,Q是AB邊上的兩個(gè)動(dòng)點(diǎn),且不與點(diǎn)A,B重合,GQ=2.當(dāng)四邊形MEQG的周長(zhǎng)最小時(shí),求最小周長(zhǎng)值.(計(jì)算結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意一個(gè)四位數(shù)n,如果千位與十位上的數(shù)字之和為9,百位與個(gè)位上的數(shù)字之和也為9,則稱n極數(shù),記為n= 其中,且x、y為整數(shù)

請(qǐng)任意寫出兩個(gè)極數(shù);

猜想任意一個(gè)極數(shù)是否是99的倍數(shù),請(qǐng)說(shuō)明理由;

如果一個(gè)正整數(shù)a是另一個(gè)正整數(shù)b的平方,則稱正整數(shù)a是完全平方數(shù),若四位數(shù)m極數(shù),記寫出三個(gè)滿足是完全平方數(shù)的只需直接寫出結(jié)果

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰OBC的邊OBx軸上,OBCB,OB邊上的高CAOC邊上的高BE相交于點(diǎn)D,連接OD,AB,∠CBO=45°,在直線BE上求點(diǎn)M,使BMCODC相似,則點(diǎn)M的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列方程,①3x2+x=20,②2x2-3xy+4=0,③,④x2=0,⑤x2-3x-4=0.是一元二次方程的是( 。

A. ①②B. ①②④⑤C. ①③④D. ①④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案