【題目】如圖,在平面直角坐標系中,矩形的頂點坐標為,點在邊上從點運動到點,以為邊作正方形,連,在點運動過程中,請?zhí)骄恳韵聠栴}:
(1)的面積是否改變,如果不變,求出該定值;如果改變,請說明理由;
(2)若為等腰三角形,求此時正方形的邊長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.
(1)求證:四邊形ABDE是平行四邊形;
(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了從甲、乙兩名學生中選擇一人參加電腦知識競賽,在相同條件下對他們的電腦知識進行了10次測驗,成績?nèi)缦拢?單位:分)
甲成績 | 76 | 84 | 90 | 84 | 81 | 87 | 88 | 81 | 85 | 84 |
乙成績 | 82 | 86 | 87 | 90 | 79 | 81 | 93 | 90 | 74 | 78 |
(1)請完成下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | 85分以上的頻率 | |
甲 | 84 | 14.4 | 0.3 | ||
乙 | 84 | 84 | 34 |
(2)利用以上信息,請從三個不同的角度對甲、乙兩名同學的成績進行分析.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
已知:如圖,在正方形ABCD中,邊AB=a1.
按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關系,并且一個比一個小.
操作步驟 | 作法 | 由操作步驟推斷(僅選取部分結(jié)論) |
第一步 | 在第一個正方形ABCD的對角線AC上截取AE=a1,再作EF⊥AC于點E,EF與邊BC交于點F,記CE=a2 | (i)△EAF≌△BAF(判定依據(jù)是①); (ii)△CEF是等腰直角三角形; (iii)用含a1的式子表示a2為②: |
第二步 | 以CE為邊構(gòu)造第二個正方形CEFG; | |
第三步 | 在第二個正方形的對角線CF上截取FH=a2,再作IH⊥CF于點H,IH與邊CE交于點I,記CH=a3: | (iv)用只含a1的式子表示a3為③: |
第四步 | 以CH為邊構(gòu)造第三個正方形CHIJ | |
這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④ |
請解決以下問題:
(1)完成表格中的填空:
① ;② ;③ ;④ ;
(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的頂點 A的坐標為(4,2),頂點B,C分別在軸,軸的正半軸上.
(1)求證:∠OCB=∠ABE;
(2)求OC長的取值范圍;
(3)若D的坐標為(,),請說明隨的變化情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年4月23日世界讀書日這天,某校初三年級的小記者,就2018年寒假讀課外書數(shù)量(單位:本)做了調(diào)查,他們隨機調(diào)查了甲、乙兩個班的10名同學,調(diào)查過程如下,請補充完整.
收集數(shù)據(jù)甲、乙兩班被調(diào)查者讀課外書數(shù)量(單位:本)統(tǒng)計如下:
甲:1,9,7,4,2,3,3,2,7,2
乙:2,6,6,3,1,6,5,2,5,4
整理、描述數(shù)據(jù)繪制統(tǒng)計表如下,請補全下表:
班級 | 平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 |
甲 | 4 | ______ | 3 | 5.6 |
乙 | 4 | 6 | ______ | 3.2 |
分析數(shù)據(jù)、推斷結(jié)論
(1)該校初三乙班共有40名同學,你估計2018年寒假讀6本書的同學大概有______人;
(2)你認為甲、乙兩班同學寒假讀書情況更好的是_______,理由是:______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了計算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程有實數(shù)根.
(1)求k的取值范圍;
(2)若k為正整數(shù),且方程有兩個非零的整數(shù)根,求k的取值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A'B'C',此時點A'恰好在AB邊上,則點B'與點B之間的距離為( )
A. 12 B. 6 C. 6 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com