【題目】如圖,在等腰三角形ABC中,AB=AC,點D在BA的延長線上,BC=24, .
(1)求AB的長;
(2)若AD=6.5,求的余切值.
【答案】(1)13(2)
【解析】試題分析:
(1)過點A作AE⊥BC于點E,結合AB=AC,BC=24可得BE=12,在Rt△AEB中,由sin∠ABC= 設AE=5k,AB=13k,由勾股定理可得解得BE=12k=12,由此可得k=1,從而可得AB=13;
(2)過點D作DF⊥BC于點F,則易得BD=19.5,AE∥DF,從而可得結合AE=5,BE=12,AB=13即可求得DF=,BF=18,由此可得CF=BC-BF=6,結合∠DFC=90°即可得到cot∠DCB= .
試題解析:
(1)過點A作AE⊥BC,垂足為點E,
∵AB=AC,
∴BE=BC=12,
在Rt△ABE中,∠AEB=90°,sin∠ABC=,
設AE=5k,AB=13k,∵AB2=AE2+BE2,
∴169k2=25k2+BE2,解得BE=12K=12,
∴k=1,
∴AE=5,AB=13;
(2)過點D作DF⊥BC,垂足為點F,
∵AD=6.5,AB=13,
∴BD=AB+AD=19.5,
∵AE⊥BC,DF⊥BC ,
∴ ∠AEB=∠DFB=90°,
∴AE∥DF,
∴,
又 ∵ AE=5,BE=12,AB=13,
∴DF=,BF=18,
∴CF=BC=BF=6,
∵在Rt△DCF中,∠DFC=90°,
∴cot∠DCB= .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+b的圖象與x軸,y軸分別交于點A,B,與一次函數(shù)y=x的圖象交于點M,點M的橫坐標為,在x軸上有一點P(a,0),過點P作x軸的垂線,分別交一次函數(shù)y=-x+b和一次函數(shù)y=x的圖象于點C,D.
(1)點M的縱坐標是 ;b的值是 ;
(2)求線段AB的長;
(3)當CD=AB時,請直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了貫徹落實市委政府提出的“精準扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運往A、B兩村的運費如表:
車型 | 目的地 | |
A村(元/輛) | B村(元/輛) | |
大貨車 | ||
800 | 900 | |
小貨車 | 400 | 600 |
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調配方案,并求出最少費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知函數(shù)y=x+2與x軸交于點A,與y軸交于點B,點C與點A關于y軸對稱.
(1)求直線BC的函數(shù)解析式;
(2)設點M是x軸上的一個動點,過點M作y軸平行線,交直線AB于點P,交直線BC于點Q.
①若△PQB的面積為,求點M的坐標:
②在①的條件下,在直線PQ上找一點R,使得△MOR≌△MOQ,直接寫出點R的坐標;
(3)連接BM,如圖2.若∠BMP=∠BAC,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代偉大的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為( )
A. 20 B. 24 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛在實踐課上要做一個如圖1所示的折扇,折扇扇面的寬度AB是骨柄長OA的,折扇張開的角度為120°.小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長為24cm,寬為21cm.小剛經(jīng)過畫圖、計算,在矩形布料上裁剪下了最大的扇面,若不計裁剪和粘貼時的損耗,此時扇面的寬度AB為( )
A. 21cm B.20 cm C. 19cm D. 18cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC在平面直角坐標系內(0為坐標原點),點A在x軸上,點C在y軸上,點B的坐標分別為(-2,2),點E是BC的中點,點H在OA上,且AH=,過點H且平行于y軸的HG與EB交于點G,現(xiàn)將長方形折疊,使頂點C落在HG上的D點處,折痕為EF,點F為折痕與y軸的交點.
(1)求點D的坐標;
(2)求折痕EF所在直線的函數(shù)表達式;
(3)若點P在直線AB上,當△PFD為等腰三角形時,試問滿足條件的點P有幾個?請求出點P的坐標,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推進垃圾分類,推動綠色發(fā)展,某工廠購進甲、乙兩種型號的機器人用來進行垃圾分類,甲型機器人比乙型機器人每小時多分20kg,甲型機器人分類800kg垃圾所用的時間與乙型機器人分類600kg垃圾所用的時間相等。
(1)兩種機器人每小時分別分類多少垃圾?
(2)現(xiàn)在兩種機器人共同分類700kg垃圾,工作2小時后甲型機器人因機器維修退出,求甲型機器人退出后乙型機器人還需工作多長時間才能完成?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個正比例函數(shù)與一個一次函數(shù)圖象交于點,且.
(1)求這兩個函數(shù)的表達式;
(2)直線與直線、構不成三角形,直接寫出的值 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com