(2007•懷柔區(qū)二模)已知二次函數(shù)y=4x2+bx+(b2+b),b取任何實(shí)數(shù)時(shí),它的圖象都是一條拋物線(xiàn).
(1)現(xiàn)在有如下兩種說(shuō)法:
①b取任何不同的數(shù)值時(shí),所對(duì)應(yīng)的拋物線(xiàn)都有著完全相同的形狀;
②b取任何不同的數(shù)值時(shí),所對(duì)應(yīng)的拋物線(xiàn)都有著不相同的形狀.
你認(rèn)為哪一種說(shuō)法正確,為什么?
(2)若b=-1,b=2時(shí)對(duì)應(yīng)的拋物線(xiàn)的頂點(diǎn)分別為A,B,請(qǐng)你求出直線(xiàn)AB的解析式;
(3)在(2)中所確定的直線(xiàn)AB上有一點(diǎn)C,且點(diǎn)C的縱坐標(biāo)為-1,問(wèn):在x軸上是否存在點(diǎn)D使△COD為等腰三角形?若存在,直接寫(xiě)出點(diǎn)D的坐標(biāo);若不存在,簡(jiǎn)單說(shuō)明理由.
【答案】分析:(1)由于拋物線(xiàn)的形狀只與拋物線(xiàn)的二次項(xiàng)系數(shù)有關(guān),顯然①的說(shuō)法是正確的.
(2)將b=-1、b=2分別代入拋物線(xiàn)的解析式中,用配方法求出兩條拋物線(xiàn)的頂點(diǎn)坐標(biāo),也就得到了A、B點(diǎn)的坐標(biāo),從而利用待定系數(shù)法求出直線(xiàn)AB的解析式.
(3)根據(jù)(2)題得到的直線(xiàn)AB的解析式,可確定點(diǎn)C的坐標(biāo);由于△COD的腰和底不確定,分:①OC=OD、②OC=CD、③OD=CD三種情況討論即可.
解答:解:(1)拋物線(xiàn)的開(kāi)口方向和形狀只與二次項(xiàng)系數(shù)有關(guān),與一次項(xiàng)系數(shù)和常數(shù)項(xiàng)無(wú)關(guān),
故①的說(shuō)明是正確的.

(2)當(dāng)b=-1時(shí),y=4x2-x=4(x-2-,
故A(,-);
當(dāng)b=2時(shí),y=4x2+2x+=4(x+2+,
故B(-,);
設(shè)直線(xiàn)AB的解析式為:y=kx+b,則有:
,
解得
故直線(xiàn)AB的解析式為:y=-x.

(3)當(dāng)y=-1時(shí),-1=-x,x=2,
故C(2,-1);
可得OC=;
若△COD是等腰三角形,則有:
①OC=OD,則OD=;
∴D1(-,0),D2,0);
②OC=CD;
根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)知:C點(diǎn)位于OD的垂直平分線(xiàn)上,
故D3(4,0);
③OD=CD;
此時(shí)D位于OC的垂直平分線(xiàn)上,則∠OCD4=∠OD3C=∠COD4,
則△OD4C∽△OCD3,得OC2=OD4•OD3
由于OC=,OD3=4,
可求得OD4=,
故D4,0);
綜上所述,存在4個(gè)符合條件的D點(diǎn),它們的坐標(biāo)為:D1(-,0),D2,0),D3(4,0),D4,0).
點(diǎn)評(píng):此題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、函數(shù)解析式的確定、等腰三角形的構(gòu)成情況等知識(shí)點(diǎn);(3)題中,由于等腰三角形的腰和底不確定,一定要分類(lèi)討論,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•懷柔區(qū)二模)把4個(gè)紅球、3個(gè)白球、2個(gè)黑球放入一個(gè)不透明袋子里,把袋子中的球搖勻,從口袋中任取一個(gè)球,這個(gè)球是紅球的概率為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•懷柔區(qū)二模)已知第一個(gè)三角形的周長(zhǎng)為1,它的三條中位線(xiàn)組成第二個(gè)三角形,第二個(gè)三角形的三條中位線(xiàn)又組成第三個(gè)三角形,以此類(lèi)推,則第4個(gè)三角形的周長(zhǎng)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•懷柔區(qū)二模)解方程:
2
x-1
=1-
2x
1-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•懷柔區(qū)二模)已知圖1和圖2中的每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位.
(1)將圖中的格點(diǎn),△ABC先向右平移3個(gè)單位,再向上平移2個(gè)單位,得到格點(diǎn)三角形A1B1C1.請(qǐng)你在圖1中畫(huà)出A1B1C1
(2)在圖中畫(huà)一個(gè)格點(diǎn)△D1E1F1,使格點(diǎn)△D1E1F1與格點(diǎn)△DEF關(guān)于點(diǎn)O成中心對(duì)稱(chēng).(說(shuō)明:頂點(diǎn)都在網(wǎng)格線(xiàn)交點(diǎn)處的三角形叫做格點(diǎn)三角形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•懷柔區(qū)二模)如圖,有一長(zhǎng)方形的地區(qū),長(zhǎng)為x千米,寬為12千米,現(xiàn)規(guī)劃將它分成三部分:甲、乙、丙.甲和乙為正方形.若已知丙地的面積為32平方千米,試求x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案