【題目】如圖,AB是⊙O的直徑,過⊙O外一點P作⊙O的兩條切線PC,PD,切點分別為C,D,連接OP,CD.
(1)求證:OP⊥CD;
(2)連接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的長.
【答案】(1)證明見解析;(2).
【解析】
(1)先判斷出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出結(jié)論;
(2)先 求出∠COD=60°,得出△OCD是等邊三角形,最后用銳角三角函數(shù)即可得出結(jié)論.
(1)證明:如圖,連接OC,OD,則OC=OD.
∵PD,PC是⊙O的切線,
∴∠ODP=∠OCP=90°.
在Rt△ODP和Rt△OCP中,
,
∴Rt△ODP≌Rt△OCP,
∴∠DOP=∠COP.
∵OD=OC,
∴OP⊥CD.
(2)連接AD,BC如圖所示,則OA=OD=OC=OB=2,
∴∠ADO=∠DAO=50°,
∠BCO=∠CBO=70°,
∴∠AOD=80°,∠BOC=40°,
∴∠COD=60°.
∵OD=OC,
∴△COD是等邊三角形.
由(1)知,∠DOP=∠COP=30°,
在Rt△ODP中,OP==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個長方體,至少還需要________個小立方塊.最終搭成的長方體的表面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)已知:ABCD的兩邊AB,AD的長是關(guān)于x的方程的兩個實數(shù)根.
(1)當m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;
(2)若AB的長為2,那么ABCD的周長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設(shè)種草部分的面積為(m2),種草所需費用1(元)與(m2)的函數(shù)關(guān)系式為,其圖象如圖所示:栽花所需費用2(元)與x(m2)的函數(shù)關(guān)系式為2=﹣0.012﹣20+30000(0≤≤1000).
(1)請直接寫出k1、k2和b的值;
(2)設(shè)這塊1000m2空地的綠化總費用為W(元),請利用W與的函數(shù)關(guān)系式,求出綠化總費用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:
我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);
(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.
求證:BD是四邊形ABCD的“相似對角線”;
(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】深圳市某校九年級有500名學生,在體育考試前隨機抽取部分學生進行體能測試,成績分別記為A、B、C、D共四個等級,其中A級和B級成績?yōu)椤皟?yōu)”,將測試結(jié)果繪制成如下條形統(tǒng)計圖和扇形統(tǒng)計圖.
成績頻數(shù)條形統(tǒng)計圖 成績頻數(shù)扇形統(tǒng)計圖
(1)求抽取參加體能測試的學生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)估計該校九年級全體學生參加體能測試成績?yōu)椤皟?yōu)”的學生共有多少人?(精確到個位)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是矩形ABCD下方一點,將△PCD繞點P順時針旋轉(zhuǎn)60°后,恰好點D與點A重合,得到△PEA,連接EB,問:△ABE是什么特殊三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(9分)如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=kx+m與雙曲線y=﹣相交于點A(m,2).
(1)求直線y=kx+m的表達式;
(2)直線y=kx+m與雙曲線y=﹣的另一個交點為B,點P為x軸上一點,若AB=BP,直接寫出P點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com