【題目】如圖,數(shù)學(xué)實踐活動小組要測量學(xué)校附近樓房CD的高度,在水平地面A處安置測傾器測得樓房CD頂部點D的仰角為45°,向前走20米到達A′處,測得點D的仰角為67.5°,已知測傾器AB的高度為1.6米,則樓房CD的高度約為(結(jié)果精確到0.1米, ≈1.414)( )

A.34.14米
B.34.1米
C.35.7米
D.35.74米

【答案】C
【解析】解:過B作BF⊥CD于F,作B′E⊥BD,

∵∠BDB'=∠B'DC=22.5°,
∴EB'=B'C,
∵∠BEB′=45°,
∴EB′=B′F=10√2,
∴DF=20+10√2,
∴DC=DF+FC=20+10√2+1.6≈35.74=35.7,
所以答案是:C,
【考點精析】根據(jù)題目的已知條件,利用關(guān)于仰角俯角問題的相關(guān)知識可以得到問題的答案,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從D點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網(wǎng)與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是( )

A.球不會過網(wǎng)
B.球會過球網(wǎng)但不會出界
C.球會過球網(wǎng)并會出界
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種對正整數(shù)n“F”運算:①當n為奇數(shù)時,F(n)=3n+1;②當n為偶數(shù)時,F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運算交替重復(fù)進行,例如,取n=24,則:

n=13,則第2018“F”運算的結(jié)果是(  )

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)研究平面直角坐標系,我們可以發(fā)現(xiàn)一條重要的規(guī)律:若平面直角坐標系上有兩個不同的點、,則線段AB的中點坐標可以表示為

(簡單應(yīng)用)如圖1,直線ABy軸交于點,與x軸交于點,過原點O的直線L分成面積相等的兩部分,請求出直線L的解析式;

(探究升級)小明發(fā)現(xiàn)若四邊形一條對角線平分四邊形的面積,則這條對角線必經(jīng)過另一條對角線的中點

如圖2,在四邊形ABCD中,對角線AC、BD相交于點O,試說明

(綜合運用)如圖3,在平面直角坐標系中,,,若OC恰好平分四邊形OACB的面積,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:射線PO與⊙O交于A、B兩點,PC、PD分別切⊙O于點C、D.

(1)請寫出兩個不同類型的正確結(jié)論;
(2)若CD=12,tan∠CPO= ,求PO的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,點GBC的中點,點HAF上,動點P以每秒2cm的速度沿圖1的邊線運動,運動路徑為:GCDEFH,相應(yīng)的△ABP的面積ycm2)關(guān)于運動時間ts)的函數(shù)圖象如圖2,若AB=6cm,則下列四個結(jié)論中正確的個數(shù)有( 。

①圖1中的BC長是8cm ②圖2中的M點表示第4秒時y的值為24cm2,

③圖1中的CD長是4cm ④圖2中的N點表示第12秒時y的值為18cm2

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列填空.

如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE.

證明:∵∠B+BCD=180°(已知),

ABCD .

∴∠B=DCE .

又∵∠B=D(已知 ,

___________ ( 等量代換 ).

ADBE(內(nèi)錯角相等,兩直線平行)

∴∠E=DFE .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB90°,OC為一條射線,OE,OF分別平分∠AOC,∠BOC,那么∠EOF 的度數(shù)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知∠1+2=180°,∠2=B,試說明∠DEC+C=180°,請完成下列填空:

證明:∵∠1+2=180°(已知)

__________(____________________)

______=EFC(____________________)

又∵2=B(已知)

∴∠2=______(等量代換)

___________(內(nèi)錯角相等,兩直線平行)

∴∠DEC+C=180°(兩直線平行,同旁內(nèi)角互補)

查看答案和解析>>

同步練習(xí)冊答案