【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=5,AB=9,求:
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長(zhǎng)度;
(3)BE與DF的位置關(guān)系如何?
【答案】(1)旋轉(zhuǎn)中心為點(diǎn)A,旋轉(zhuǎn)角為∠BAD=90°;(2)DE=4;(3)BE⊥DF.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)A為旋轉(zhuǎn)中心,對(duì)應(yīng)邊AB、AD的夾角為旋轉(zhuǎn)角;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AE=AF,AD=AB,然后根據(jù)DE=AD﹣AE計(jì)算即可得解;
(3)根據(jù)旋轉(zhuǎn)可得△ABE和△ADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=DF,全等三角形對(duì)應(yīng)角相等可得∠ABE=∠ADF,然后求出∠ABE+∠F=90°,判斷出BE⊥DF.
解:(1)旋轉(zhuǎn)中心為點(diǎn)A,旋轉(zhuǎn)角為∠BAD=90°;
(2)∵△ADF按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后得到△ABE,
∴AE=AF=5,AD=AB=9,
∴DE=AD﹣AE=9﹣5=4;
(3)BE、DF的位置關(guān)系為:BE⊥DF.理由如下:
∵△ADF按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后得到△ABE,
∴△ABE≌△ADF,
∴BE=DF,∠ABE=∠ADF,
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∴∠ADF+∠F=180°﹣∠BAD=90°,
∴∠ABE+∠F=90°,
∴BE⊥DF,
∴BE、DF的位置關(guān)系為:BE⊥DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC 中,AB 為半圓 O 的直徑,AC、BC 分別交半圓 O 于點(diǎn) E、D,且 BD=DE.
(1)求證:點(diǎn) D 是 BC 的中點(diǎn).
(2)若點(diǎn) E 是 AC 的中點(diǎn),判斷△ABC 的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2x+c與x軸交A(﹣1,0),B兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)E.
(1)求拋物線的解析式;
(2)經(jīng)過(guò)B,C兩點(diǎn)的直線交拋物線的對(duì)稱(chēng)軸于點(diǎn)D,點(diǎn)P為直線BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)E時(shí),求△PCD的面積;
(3)點(diǎn)N在拋物線對(duì)稱(chēng)軸上,點(diǎn)M在x軸上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,B為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B(4,0),C
(0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動(dòng)點(diǎn).
(1) 求這個(gè)二次函數(shù)的解析式;
(2) 是否存在點(diǎn) P,使△POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3) 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 S△DBC=S△ABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的表達(dá)式是y=ax2+(1﹣a)x+1﹣2a(a為不等于0的常數(shù)),上述拋物線無(wú)論a為何值始終經(jīng)過(guò)定點(diǎn)A和定點(diǎn)B;A為x軸上的點(diǎn),B為第一象限內(nèi)的點(diǎn).
(1)請(qǐng)寫(xiě)出A,B兩點(diǎn)的坐標(biāo):A( ,0);B( , );
(2)如圖1,當(dāng)拋物線與x軸只有一個(gè)公共點(diǎn)時(shí),求a的值;
(3)如圖2,當(dāng)a<0時(shí),若上述拋物線頂點(diǎn)是D,與x軸的另一交點(diǎn)為點(diǎn)C,且點(diǎn)A,B,C,D中沒(méi)有兩個(gè)點(diǎn)相互重合.
求:①△ABC能否是直角三角形,為什么?
②若使得△ABD是直角三角形,請(qǐng)你求出a的值.(求出1個(gè)a的值即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)都是的正方形網(wǎng)格中,的三個(gè)頂點(diǎn)都在小正方形的格點(diǎn)上.將繞點(diǎn)旋轉(zhuǎn)得到(點(diǎn)、分別與點(diǎn)、對(duì)應(yīng)),連接,.
(1)請(qǐng)直接在網(wǎng)格中補(bǔ)全圖形;
(2)四邊形的周長(zhǎng)是________________(長(zhǎng)度單位)
(3)直接寫(xiě)出四邊形是何種特殊的四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,二次函數(shù)y=ax2+bx+a2+b(a≠0)的圖象為下列圖象之一,則a的值為( )
A. -1 B. 1 C. -3 D. -4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成鈍角三角形的是( )
A. 3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰中,,直線過(guò)點(diǎn)且.是上一點(diǎn),過(guò)作垂足為,過(guò)作垂足為,已知.
(1)如圖①,在直線上有一點(diǎn),連接,且,求證:;
(2)如圖②,將沿方向平移,分別交于,兩點(diǎn),當(dāng)時(shí),求的面積;
(3)如圖③,設(shè)直線從點(diǎn)出發(fā)沿方向平移的速度為每秒1個(gè)單位,與交于點(diǎn),同時(shí)有一動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同的速度向點(diǎn)運(yùn)動(dòng),過(guò)作交于,設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)到達(dá)點(diǎn)時(shí)所有運(yùn)動(dòng)停止,問(wèn)是否存在以、、為頂點(diǎn)的三角形是等腰三角形?若存在,直接寫(xiě)出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com