已知⊙O1和⊙O2的半徑分別是一元二次方程(-1)(-2)=0的兩根,且O1O2=2,則⊙O1和⊙O2的位置關(guān)系是        .
相交

試題分析:本題可根據(jù)方程解出兩個半徑的值,將兩個半徑的和或差與圓心距比較,若d>R+r則兩圓相離,若d=R+r則兩圓外切,若d=R-r則兩圓內(nèi)切,若R-r<d<R+r則兩圓相交.本題可把半徑的值代入,看符合哪一種情況.
解方程(x-1)(x-2)=0,得x1=1,x2=2,
∵2-1=1<2<2+1=3,
∴⊙O1和⊙O2的位置關(guān)系是相交.
點(diǎn)評:解答本題的關(guān)鍵是掌握兩圓的位置關(guān)系有:外離(d>R+r)、內(nèi)含(d<R-r)、相切(外切:d=R+r或內(nèi)切:d=R-r)、相交(R-r<d<R+r).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知OA、OB是⊙O的兩條半徑,且OA⊥BC,C為OB延長線上任意一點(diǎn),過點(diǎn)C作CD切⊙O于點(diǎn)D,連接AD,交OC過于點(diǎn)E。

(1)求證:CD=CE;
(2)若將圖1中的半徑OB所在的直線向上平行移動,交⊙O于,其他條件不變,如圖2,那么上述結(jié)論CD=CE還成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=2,ED=4,

(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知⊙O的半徑為8cm,點(diǎn)A為半徑OB的延長線上一點(diǎn),射線AC切⊙O于點(diǎn)C,BC的長為,求線段AB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓半徑分別是方程的兩根,當(dāng)圓心距等于5時,兩圓的位置關(guān)系是(    )。
A.相交。B.外離。C.外切。D.內(nèi)切。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等邊△ABC中,AD⊥BC于點(diǎn)D,一個直徑與AD相等的圓與BC相切于點(diǎn)E,與AB相切于點(diǎn)F,連接EF。

(1)判斷EF與AC的位置關(guān)系(不必說明理由);;
(2)如圖(2),過E作BC的垂線,交圓于G,連接AG,判斷四邊形ADEG的形狀,并說明理由。
(3)求證:AC與GE的交點(diǎn)O為此圓的圓心.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知PA、PB切⊙O于A、B兩點(diǎn),連AB,且PA,PB的長是方程= 0的兩根,AB =" m." 試求:

(1)⊙O的半徑;(2)由PA,PB,圍成圖形(即陰影部分)的面積. (計算結(jié)果用含有π的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如下圖所示的圖案中,弧=弧=弧=弧=60°,繞中心O至少旋轉(zhuǎn)________度后,能與原來的圖案重合。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的直徑AB平分弦CD, CD ="10cm," AP: PB="1" : 5.求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案