【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
【答案】
(1)
證明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四邊形ADEC是平行四邊形,
∴CE=AD;
(2)
解:四邊形BECD是菱形,
理由是:∵D為AB中點,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,D為AB中點,
∴CD=BD,
∴四邊形BECD是菱形;
(3)
當∠A=45°時,四邊形BECD是正方形,理由是:
解:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D為BA中點,
∴CD⊥AB,
∴∠CDB=90°,
∵四邊形BECD是菱形,
∴菱形BECD是正方形,
即當∠A=45°時,四邊形BECD是正方形.
【解析】(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,求出CD=BD,根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4) 中正確的有( )
A. 4個
B. 3個
C. 2個
D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各組的兩個數(shù)中,運算后結(jié)果相等的是( )
A.23和32
B.﹣53和(﹣5)3??
C.﹣|﹣5|和﹣(﹣5)
D.(﹣ )3和﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副直角三角板ABC(含30°、60°角)和CDE(含45°、45°角)如圖放置,使直角頂點C重合,若DE∥BC,則∠1的度數(shù)是( )
A.75°
B.105°
C.110°
D.120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA在x軸上,OB在y軸上,OA=8,AB=10,點C在邊OA上,AC=2,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(shù)()的圖象經(jīng)過圓心P,則k= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:中華人民共和國國旗上的五角星的每個角均相等,小明為了計算每個角的度數(shù),畫出了如圖①的五角星,每個角均相等,并寫出了如下不完整的計算過程,請你將過程補充完整.
解:∵∠AFG=∠C+∠E,∠AGF=∠B+∠D.
∴∠AFG+∠AGF=∠C+∠E+∠B+∠D.
∵∠A+∠AFG+∠AGF=°,
∴∠A+∠B+∠C+∠D+∠E=°,
∴∠A=∠B=∠C=∠D=∠E=°.
拓展:如圖②,小明改變了這個五角星的五個角的度數(shù),使它們均不相等,請你幫助小明求∠A、∠B、∠C、∠D、∠E的和.
應(yīng)用:如圖③.小明將圖②中的點A落在BE上,點C落在BD上,若∠B=∠D=36°,則∠CAD+∠ACE+∠E=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知整數(shù)a1 , a2 , a3 , a4…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此類推,則a2017的值為( )
A.﹣1009
B.﹣1008
C.﹣2017
D.﹣2016
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校師生為了對學生零花錢的使用進行教育指導,對全班50名學生每人一周內(nèi)的零花錢數(shù)額進行了調(diào)查統(tǒng)計,并繪制如下統(tǒng)計表:
零花錢數(shù)額/元 | 5 | 10 | 15 | 20 |
學生人數(shù)/名 | a | 15 | 20 | 5 |
根據(jù)表格中信息,回答下列問題:
(1)求a的值.
(2)求著50名學生每人一周內(nèi)零花錢數(shù)額的中位數(shù).
(3)隨機抽查一名學生,抽到一周內(nèi)零花錢數(shù)額不大于10元的同學概率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,a、b滿足|a+2|+|b-6|=0。
(1)點A表示的數(shù)為,點B表示的數(shù)為;
(2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在數(shù)軸上找一點C,使AC=BC,則C點表示的數(shù)為;
(3)如圖2,若在原點O處放一擋板,一小球甲從點A處以1個單位/秒的速度向左運動;同時另一小球乙從點B處以2個單位/秒的速度也向左動。在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為t(秒)。
①分別表示出甲、乙兩小球到原點的距離(用t表示)
②求甲、乙兩小球到原點的距離相等時經(jīng)歷的時間。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com