【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=3,EC=1,則DE的長(zhǎng)為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)直角三角形斜邊上的中線的性質(zhì)可得DG=AG,根據(jù)等腰三角形的性質(zhì)可得∠ GAD=
∠ GDA,根據(jù)三角形外角的性質(zhì)可得∠ CGD=2∠ GAD,再根據(jù)平行線的性質(zhì)和等量關(guān)系可得∠ ACD=∠CGD,根據(jù)等腰三角形的性質(zhì)可得CD=DG,再根據(jù)勾股定理即可求解.
∵DE⊥BC,
∴∠DEB=90°,
∵AD∥BC,
∴∠ADE+∠DEB=180°,
∴∠ADE=90°,
∵G為AF的中點(diǎn),
∴DG=AG,
∴∠DAF=∠ADG,
∴∠DGC=∠DAF+∠ADG=2∠DAC,
∵AD∥BC,
∴∠ACB=∠DAC,
∵∠ACD=2∠ACB,
∴∠DGC=∠DCA,
∴DG=DC,
∵在Rt△DEC中,∠DEC=90°,DG=DC=3,CE=1,∴由勾股定理得:DE=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個(gè)人住宿),雙人間(供兩個(gè)人住宿),四人間(供四個(gè)人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.
(1)若2018年學(xué)校寢室數(shù)為64個(gè),以后逐年增加,預(yù)計(jì)2020年寢室數(shù)達(dá)到121個(gè),求2018至2020年寢室數(shù)量的年平均增長(zhǎng)率;
(2)若三類不同的寢室的總數(shù)為121個(gè),則最多可供多少師生住宿?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校實(shí)驗(yàn)課程改革,初三年級(jí)設(shè)罝了A,B,C,D四門不同的拓展性課程(每位學(xué)生只選修其中一門,所有學(xué)生都有一門選修課程),學(xué)校摸底調(diào)査了初三學(xué)生的選課意向,并將調(diào)查結(jié)果繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,問(wèn)該校初三年級(jí)共有多少學(xué)生?其中要選修B、C課程的各有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長(zhǎng)AO交O于E,連接CD,CE,若CE是⊙O的切線,解答下列問(wèn)題:
(1)求證:CD是⊙O的切線;
(2)若BC=4,CD=6,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,平分,且交于點(diǎn),平分,且交于點(diǎn),與相交于點(diǎn),連接
(1)求證:四邊形是菱形.
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E為ABCD中DC邊的延長(zhǎng)線上的一點(diǎn),且CE=DC,連接AE交BC于點(diǎn)F,連接AC、BE.
(1)如圖1,求證:AF=EF;
(2)連接BD交AC于點(diǎn)O,連接OF并延長(zhǎng)交BE于點(diǎn)G,直接寫出圖中所有長(zhǎng)度是OF二倍的線段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為點(diǎn)D、E,AD與BE交于點(diǎn)F,BF=AC, ∠ABE=22°,則∠CAD的度數(shù)是________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行于x軸的直線AC分別交函數(shù) y=x(x≥0)與 y= x(x≥0)的圖象于 B,C兩點(diǎn),過(guò)點(diǎn)C作y軸的平行線交y=x(x≥0)的圖象于點(diǎn)D,直線DE∥AC交 y=x(x≥0)的圖象于點(diǎn)E,則=( )
A. B. 1 C. D. 3﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面關(guān)于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實(shí)數(shù);⑤=x-1一元二次方程的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com