如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則點E到BC邊的距離為多少?
分析:(1)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式進行計算即可得解;
(2)根據(jù)高線的定義,過點E作BD的垂線即可得解;
(3)根據(jù)三角形的中線把三角形分成的兩個三角形面積相等,先求出△BDE的面積,再根據(jù)三角形的面積公式計算即可.
解答:解:(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,
∴∠BED=∠ABE+∠BAD=15°+40°=55°;

(2)如圖,EF為BD邊上的高;

(3)∵AD為△ABC的中線,BE為△ABD的中線,
∴S△ABD=
1
2
S△ABC,S△BDE=
1
2
S△ABD,
∴S△BDE=
1
4
S△ABC,
∵△ABC的面積為40,BD=5,
∴S△BDE=
1
2
BD•EF=
1
2
×5•EF=
1
4
×40,
解得EF=4.
點評:本題考查了三角形的外角性質(zhì),三角形的面積,利用三角形的中線把三角形分成兩個面積相等的三角形是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,∠ADC=45°,把△ADC沿AD對折,點C落在點C′的位置,BC=4,求BC′的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)在△BED中作BD邊上的高,垂足為F;
(2)若△ABC的面積為20,BD=5.
①△ABD的面積為
 
,
②求△BDE中BD邊上的高EF的長;
(3)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為三角形ABD中線,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點E到BC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度數(shù);
(2)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作BD邊上的高,垂足為F;
(3)若△ABC的面積為60,BD=6,則△BDE中BD邊上的高為多少?(請寫出解題的必要過程)
(4)過點E作EG∥BC,交AC于點G,連接EC、DG且相交于點O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案