如圖,AD為△ABC的中線(xiàn),BE為△ABD的中線(xiàn).
(1)∠ABE=15°,∠BAD=26°,求∠BED的度數(shù);
(2)若△ABC的面積為40,BD=5,則△BDE中BD邊上的高為多少.
分析:(1)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠BED=∠ABE+∠BAD,然后代入數(shù)據(jù)計(jì)算即可得解;
(2)根據(jù)三角形的中線(xiàn)把三角形分成兩個(gè)面積相等的三角形求出△BDE的面積,再根據(jù)三角形的面積公式列式計(jì)算即可得解.
解答:解:(1)∠BED=∠ABE+∠BAD,
=15°+26°,
=41°;

(2)∵AD為△ABC的中線(xiàn),BE為△ABD的中線(xiàn),
∴S△BDE=
1
2
×
1
2
S△ABC=
1
4
×40=10,
設(shè)△BDE中BD邊上的高為h,
1
2
×5h=10,
解得h=4,
即△BDE中BD邊上的高為4.
點(diǎn)評(píng):本題考查了三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和的性質(zhì),三角形的面積,(2)根據(jù)等底等高的三角形的面積相等得到三角形的中線(xiàn)把三角形分成兩個(gè)面積相等的三角形求出△BDE的面積是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線(xiàn),∠ADC=45°,把△ADC沿AD對(duì)折,點(diǎn)C落在點(diǎn)C′的位置,BC=4,求BC′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AD為△ABC的中線(xiàn),BE為△ABD的中線(xiàn).
(1)在△BED中作BD邊上的高,垂足為F;
(2)若△ABC的面積為20,BD=5.
①△ABD的面積為
 

②求△BDE中BD邊上的高EF的長(zhǎng);
(3)過(guò)點(diǎn)E作EG∥BC,交AC于點(diǎn)G,連接EC、DG且相交于點(diǎn)O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線(xiàn),BE為三角形ABD中線(xiàn),
(1)∠ABE=15°,∠BAD=35°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為60,BD=5,則點(diǎn)E到BC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AD為△ABC的中線(xiàn),BE為△ABD的中線(xiàn).
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作BD邊上的高,垂足為F;
(3)若△ABC的面積為60,BD=6,則△BDE中BD邊上的高為多少?(請(qǐng)寫(xiě)出解題的必要過(guò)程)
(4)過(guò)點(diǎn)E作EG∥BC,交AC于點(diǎn)G,連接EC、DG且相交于點(diǎn)O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案