【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,點D是AC的中點,連接BD,按以下步驟作圖:①分別以B,D為圓心,大于BD的長為半徑作弧,兩弧相交于點P和點Q;②作直線PQ交AB于點E,交BC于點F,則BF=( )
A. B. 1C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點是邊上一動點(不與點重合),以長為半徑的與邊的另一個交點為,過點作于點.
當(dāng)與邊相切時,求的半徑;
聯(lián)結(jié)交于點,設(shè)的長為,的長為,求關(guān)于的函數(shù)解析式,并直接寫出的取值范圍;
在的條件下,當(dāng)以長為直徑的與相交于邊上的點時,求相交所得的公共弦的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(-2,0),B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經(jīng)過點D,連接BD,若四邊形OADB的面積為6,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉(zhuǎn)動,轉(zhuǎn)過的角度記作a;設(shè)半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:(1)若R=2,m=1,如圖1,當(dāng)旋轉(zhuǎn)30°時,圓心O′到射線AB的距離是 ;如圖2,當(dāng)a= °時,半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉(zhuǎn)動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時,為了對任意旋轉(zhuǎn)角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關(guān)系,請你幫助他直接寫出這個關(guān)系;
cosα= (用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當(dāng)半圓弧線與射線AB有兩個交點時,α的取值范圍是 ,并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次聚會上,規(guī)定每兩個人見面必須握手,且握手1次.
(1)若參加聚會的人數(shù)為3,則共握手 次;若參加聚會的人數(shù)為5,則共握手 次;
(2)若參加聚會的人數(shù)為n(n為正整數(shù)),則共握手 次;
(3)若參加聚會的人共握手28次,請求出參加聚會的人數(shù).
(4)嘉嘉由握手問題想到了一個數(shù)學(xué)問題:若線段AB上共有m個點(不含端點A,B),線段總數(shù)為多少呢?請直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為測量一棵古樹和教學(xué)樓的高,先在處用高1.5米的測角儀測得古樹頂端的仰角為,此時教學(xué)樓頂端恰好在視線上,再向前走9米到達(dá)處,又測得教學(xué)樓頂端的仰角為,點、、三點在同一水平線上.
(1)計算古樹的高;
(2)計算教學(xué)樓的高.(結(jié)果精確到0.1米,參考數(shù)據(jù):,,,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC分別交AC、AB的延長線于點E、F.
(1)求證:EF是⊙O的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司推出一款產(chǎn)品,經(jīng)市場調(diào)查發(fā)現(xiàn),該產(chǎn)品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系.關(guān)于銷售單價,日銷售量,日銷售利潤的幾組對應(yīng)值如下表:
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | m |
日銷售利潤w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))
(1)求y關(guān)于x的函數(shù)解析式(不要求寫出x的取值范圍)及m的值;
(2)根據(jù)以上信息,填空:
該產(chǎn)品的成本單價是 元,當(dāng)銷售單價x= 元時,日銷售利潤w最大,最大值是 元;
(3)公司計劃開展科技創(chuàng)新,以降低該產(chǎn)品的成本,預(yù)計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關(guān)系.若想實現(xiàn)銷售單價為90元時,日銷售利潤不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價應(yīng)不超過多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,點是上一動點,過點作的切線,連接并延長,交過點的切線于點,點是的中點,連接,.
(1)求證:是切線;
(2)當(dāng)_______度時,四邊形為正方形;
(3)連接交于點,連接,若,_______時,四邊形為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com