如圖,Rt△BAO的直角邊OA在y軸上,點(diǎn)B在第一象限內(nèi),OA=3,AB=1,若將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°,則點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo)是   
【答案】分析:根據(jù)旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)不改變圖形的大小和形狀,準(zhǔn)確把握旋轉(zhuǎn)的方向和度數(shù).
解答:解:把Rt△OAB的繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°,就是把它上面的各個(gè)點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90度.點(diǎn)A在y軸上,且OA=3,正好旋轉(zhuǎn)到x軸正半軸.
則旋轉(zhuǎn)后A′點(diǎn)的坐標(biāo)是(3,0);又旋轉(zhuǎn)過(guò)程中圖形不變,OA=3,AB=1,故點(diǎn)B′坐標(biāo)為(3,-1).
故答案為:(3,-1).
點(diǎn)評(píng):本題將一個(gè)圖形的旋轉(zhuǎn)放在坐標(biāo)系中來(lái)考查,是一道考查數(shù)與形結(jié)合的好試題,也為高中后續(xù)學(xué)習(xí)做了良好的鋪墊.從考試情況看,還有非常多考生沒(méi)完全理解旋轉(zhuǎn)的三大要素即中心、方向、角度,故失分的較多.本題綜合考查學(xué)生旋轉(zhuǎn)和坐標(biāo)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=
3
,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過(guò)B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,Rt△BAO的直角邊OA在y軸上,點(diǎn)B在第一象限內(nèi),OA=3,AB=1,若將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°,則點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo)是
(3,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在Rt△AOB中,∠BAO=90°,O為坐標(biāo)原點(diǎn),B在x軸正半軸上,A在第一象限,OA和AB的長(zhǎng)是方程x2-3
5
x+10=0
兩根,且OA<AB.
(1)求直線AB的解析式;
(2)將△AOB沿垂直于x軸的線段CD折疊(點(diǎn)C在x軸上,且不與點(diǎn)B重合,點(diǎn)D在線段AB上),使點(diǎn)B落在x軸上,對(duì)應(yīng)點(diǎn)為E,是否存在這樣的點(diǎn)C,使得△AED為直角三角形?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,Rt△BAO的直角邊OA在y軸上,點(diǎn)B在第一象限內(nèi),OA=3,AB=1,若將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°,則點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo)是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹