精英家教網 > 初中數學 > 題目詳情
精英家教網閱讀下列材料:
如圖1,⊙O1和⊙O2外切于點C,AB是⊙O1和⊙O2外公切線,A、B為切點,
求證:AC⊥BC
證明:過點C作⊙O1和⊙O2的內公切線交AB于D,
∵DA、DC是⊙O1的切線
∴DA=DC.精英家教網
∴∠DAC=∠DCA.
同理∠DCB=∠DBC.
又∵∠DAC+∠DCA+∠DCB+∠DBC=180°,
∴∠DCA+∠DCB=90°.
即AC⊥BC.
根據上述材料,解答下列問題:
(1)在以上的證明過程中使用了哪些定理?請寫出兩個定理的名稱或內容;
(2)以AB所在直線為x軸,過點C且垂直于AB的直線為y軸建立直角坐標系(如圖2),已知A、B兩點的坐標為(-4,0),(1,0),求經過A、B、C三點的拋物線y=ax2+bx+c的函數解析式;
(3)根據(2)中所確定的拋物線,試判斷這條拋物線的頂點是否落在兩圓的連心O1O2上,并說明理由.
分析:(1)由切線長相等可知用了切線長定理;由三角形的內角和是180°,可知用了三角形內角和定理;
(2)先根據勾股定理求出C點坐標,再用待定系數法即可求出經過A、B、C三點的拋物線的函數解析式;
(3)過C作兩圓的公切線,交AB于點D,由切線長定理可求出D點坐標,根據C,D兩點的坐標可求出過C,D兩點直線的解析式,根據過一點且互相垂直的兩條直線解析式的關系可求出過兩圓圓心的直線解析式,再把拋物線的頂點坐標代入直線的解析式看是否適合即可.
解答:解:(1)DA、DC是⊙O1的切線,
∴DA=DC.應用的是切線長定理;
∠DAC+∠DCA+∠DCB+∠DBC=180°,應用的是三角形內角和定理.

(2)設C點坐標為(0,y),則AB2=AC2+BC2,
即(|-4-1|)2=(-4)2+y2+12+y2,
即25=17+2y2,解得y=2(舍去)或y=-2.
故C點坐標為(0,-2),
設經過A、B、C三點的拋物線的函數解析式為y=ax2+bx+c,
16a-4b+c=0
a+b+c=0
c=-2
,精英家教網
解得
a=
1
2
b=
3
2
c=-2
,
故所求二次函數的解析式為y=
1
2
x2+
3
2
x-2.

(3)過C作兩圓的公切線CD交AB于D,則AD=BD=CD,由A(-4,0),B(1,0)可知D(-
3
2
,0),
設過CD兩點的直線為y=kx+b,則
-
3
2
k+b=0
b=-2
,
解得
k=-
4
3
b=-2
,
故此一次函數的解析式為y=-
4
3
x-2,
∵過O1,O2的直線必過C點且與直線y=-
4
3
x-2垂直,
故過O1,O2的直線的解析式為y=-
3
4
x-2.
由(2)中所求拋物線的解析式可知拋物線的頂點坐標為(
3
2
,-
25
8
),
代入直線解析式得-
3
4
×
3
2
-2=-
25
8
,故這條拋物線的頂點落在兩圓的連心O1O2上.
點評:此題是一道材料分析題.解答時要閱讀材料,獲得解題思路,并根據兩圓外切的條件作出輔助線,結合拋物線和直線的性質解答.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
如圖表示我國農村居民的小康生活水平實現程度地處西部某貧困縣,農村人口約50萬,2002年農村小康生活的綜合實現程度才達到68%,即沒有達到小康程度的人口約為(1-68%)×50萬=16萬.
解答下列問題:
(1)假設該縣計劃在2002年的基礎上,到2004年底,使沒有達到小康程度的16萬農村人口降至10.24萬,那么平均每年降低的百分率是多少?
(2)如果該計劃實現,2004年底該縣農村小康進程接近圖中哪一年的水平?(假設該縣人口2年內不變)精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,在正方形ABCD中,E是AD的中點,F是BA延長線上的一點,AF=
12
AB
.(1)求證△ABE≌△ADF;
精英家教網
(2)閱讀下列材料:
如圖2,把△ABC沿直線BC平行移動線段BC的長度,可以變到△ECD的位置;
精英家教網
如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
精英家教網
如圖4,以點A為中心把△ABC旋轉180°,可以變到△AED的位置.
精英家教網
像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
(3)回答下列問題:
①在圖1中,可以通過平行移動、翻折、旋轉中的哪一種方法使△ABE變到△ADF的位置,
答:
 

②指出圖1中,線段BE與DF之間的關系.
答:
 

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2013•樂山)閱讀下列材料:
如圖1,在梯形ABCD中,AD∥BC,點M,N分別在邊AB,DC上,且MN∥AD,記AD=a,BC=b.若
AM
MB
=
m
n
,則有結論:MN=
bm+an
m+n

請根據以上結論,解答下列問題:
如圖2,圖3,BE,CF是△ABC的兩條角平分線,過EF上一點P分別作△ABC三邊的垂線段PP1,PP2,PP3,交BC于點P1,交AB于點P2,交AC于點P3
(1)若點P為線段EF的中點.求證:PP1=PP2+PP3;
(2)若點P為線段EF上的任意位置時,試探究PP1,PP2,PP3的數量關系,并給出證明.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀下列材料:
如圖1,在四邊形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求證:CD=AB.
小剛是這樣思考的:由已知可得,∠CAB=30°,∠DAC=75°,∠DCA=60°,∠ACB+∠DAC=180°,由求證及特殊角度數可聯(lián)想到構造特殊三角形.即過點A作AE⊥AB交BC的延長線于點E,則AB=AE,∠E=∠D.
在△ADC與△CEA中,
∠D=∠E
∠DAC=∠ECA=75°
AC=CA

∴△ADC≌△CEA,
得CD=AE=AB.
請你參考小剛同學思考問題的方法,解決下面問題:

如圖2,在四邊形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,請問:CD與AB是否相等?若相等,請你給出證明;若不相等,請說明理由.

查看答案和解析>>

同步練習冊答案