【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以4cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以3cm/s的速度向O點(diǎn)運(yùn)動(dòng),過(guò)OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了________s時(shí),以C點(diǎn)為圓心,2cm為半徑的圓與直線EF相切.

【答案】

【解析】

當(dāng)以點(diǎn)C為圓心,2cm為半徑的圓與直線EF相切時(shí),即CF=2cm,又因?yàn)椤?/span>EFC=O=90°,所以EFC∽△DOC,利用對(duì)應(yīng)邊的比相等即可求出EF的長(zhǎng)度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范圍為0≤t≤2.

當(dāng)以點(diǎn)C為圓心,2cm為半徑的圓與直線EF相切時(shí),

此時(shí),CF=2,

由題意得:AC=4t,BD=3t

OC=8-4t,OD=6-3t,

∵點(diǎn)EOC的中點(diǎn),

CE=OC=4-2t,

∵∠EFC=O=90°,FCE=DCO,

∴△EFC∽△DOC,

,

EF=,

由勾股定理可知:CE2=CF2+EF2

(4-2t)2=2 2+(2,

解得:t=t=

0≤t≤2,

t=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論:①abc>0;b<a+c;4a-2b+c>0;2c<3b;⑤當(dāng)m≤x≤m+1時(shí),函數(shù)的最大值為a+b+c,則0≤m≤1;其中正確的結(jié)論有(  )

A. 2 個(gè) B. 3 個(gè) C. 4 個(gè) D. 5 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖,點(diǎn)MN把線段AB分割成AM.MN,NB,若以AMMN,NB為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M、N是線段AB的勾股分割點(diǎn).

1)已知M、N線段AB分割成AM,MN,NB,若,則點(diǎn)M,N是線段AB的勾股分割點(diǎn)嗎?請(qǐng)說(shuō)明理由;

2)已知點(diǎn)M、N是線段AB的勾股分割點(diǎn),且AM為直角邊,若,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解學(xué)生學(xué)習(xí)的環(huán)境(教室),研究人員對(duì)某校一間(坐滿學(xué)生、門(mén)窗關(guān)閉)教室中的的總量進(jìn)行檢測(cè),得到的部分?jǐn)?shù)據(jù)如下:

教室連續(xù)使用時(shí)間

總量

經(jīng)研究發(fā)現(xiàn),該教室空氣中總量是教室連使用時(shí)間的一次函數(shù).

1)請(qǐng)直接寫(xiě)出的函數(shù)關(guān)系式;

2)根據(jù)有關(guān)資料推算,當(dāng)該教室空氣中總量達(dá)到時(shí),學(xué)生將會(huì)稍感不適,則該教室連續(xù)使用__________學(xué)生將會(huì)開(kāi)始稍感不適.

3)如果該教室在連續(xù)使用分鐘時(shí)開(kāi)門(mén)通風(fēng),在學(xué)生全部離開(kāi)教室的情況下,分鐘可將教室空氣中的總量減少到 ,求開(kāi)門(mén)通風(fēng)時(shí)教室空氣中平均每分鐘減少多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小剛在實(shí)踐課上要做一個(gè)如圖1所示的折扇折扇扇面的寬度AB是骨柄長(zhǎng)OA的,折扇張開(kāi)的角度為120°小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面且扇面不能拼接,已知矩形布料長(zhǎng)為24cm,寬為21cm小剛經(jīng)過(guò)畫(huà)圖、計(jì)算在矩形布料上裁剪下了最大的扇面,若不計(jì)裁剪和粘貼時(shí)的損耗此時(shí)扇面的寬度AB為( )

A21cm B20 cm C19cm D18cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是邊AB上一動(dòng)點(diǎn),點(diǎn)F在邊BC上,且滿足OEOF,在點(diǎn)EA運(yùn)動(dòng)到B的過(guò)程中,以下結(jié)論正確的個(gè)數(shù)為(  )

線段OE的大小先變小后變大;線段EF的大小先變大后變;四邊形OEBF的面積先變大后變。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1

1)直接寫(xiě)出四邊形ABCD的面積和周長(zhǎng);

2)求證:∠BCD=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點(diǎn)E,交BD于點(diǎn)F,連接CF.若∠A60°,∠ACF42°,則∠ABC_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOBO,B=30°,點(diǎn)By=的圖象上,求過(guò)點(diǎn)A的反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案