如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=數(shù)學(xué)公式(x≥0)于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DE∥AC,交y2于點(diǎn)E,則數(shù)學(xué)公式=________.

3-
分析:設(shè)A點(diǎn)坐標(biāo)為(0,a),利用兩個(gè)函數(shù)解析式求出點(diǎn)B、C的坐標(biāo),然后求出AB的長(zhǎng)度,再根據(jù)CD∥y軸,利用y1的解析式求出D點(diǎn)的坐標(biāo),然后利用y2求出點(diǎn)E的坐標(biāo),從而得到DE的長(zhǎng)度,然后求出比值即可得解.
解答:設(shè)設(shè)A點(diǎn)坐標(biāo)為(0,a),(a>0),
則x2=a,解得x=,
∴點(diǎn)B(,a),
=a,
則x=
∴點(diǎn)C(,a),
∵CD∥y軸,
∴點(diǎn)D的橫坐標(biāo)與點(diǎn)C的橫坐標(biāo)相同,為,
∴y1=2=3a,
∴點(diǎn)D的坐標(biāo)為(,3a),
∵DE∥AC,
∴點(diǎn)E的縱坐標(biāo)為3a,
=3a,
∴x=3,
∴點(diǎn)E的坐標(biāo)為(3,),
∴DE=3-,
==3-
故答案為:3-
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要利用了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,根據(jù)平行與x軸的點(diǎn)的縱坐標(biāo)相同,平行于y軸的點(diǎn)的橫坐標(biāo)相同,求出用點(diǎn)A的縱坐標(biāo)表示出各點(diǎn)的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2y=
13
x
相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點(diǎn)A、B,與直線l2數(shù)學(xué)公式相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點(diǎn)E,交直線l2于點(diǎn)D,平行于y軸的直x=a交直線l1于點(diǎn)M,交直線l2于點(diǎn)N,若MN=2ED,求a的值;
(3)如圖2,點(diǎn)P是第四象限內(nèi)一點(diǎn),且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);
(2)在這一運(yùn)動(dòng)過程中, 四邊形OPEM是什么四邊形?請(qǐng)說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?
若有,請(qǐng)求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省揚(yáng)州市邗江區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(—2,0),交y軸于點(diǎn)B(0,).直過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.

(1)求拋物線與直線的解析式;

(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作 y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶萬州區(qū)巖口復(fù)興學(xué)校九年級(jí)下第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點(diǎn)A坐標(biāo)為(3 ,4). 點(diǎn)P從原點(diǎn)O開始以2個(gè)單位/秒速度沿x軸正向運(yùn)動(dòng) ;同時(shí),一條平行于x軸的直線從AC開始以1個(gè)單位/秒速度豎直向下運(yùn)動(dòng) ,交OA于點(diǎn)D,交OC于點(diǎn)M,交BC于點(diǎn)E. 當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),直線也隨即停止運(yùn)動(dòng).

(1)求出點(diǎn)C的坐標(biāo);

(2)在這一運(yùn)動(dòng)過程中, 四邊形OPEM是什么四邊形?請(qǐng)說明理由。若

用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的

范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?

(3)在整個(gè)運(yùn)動(dòng)過程中,是否存在某個(gè)t值,使⊿MPB為等腰三角形?

若有,請(qǐng)求出所有滿足要求的t值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案