如圖,拋物線與x軸交于點A(—2,0),交y軸于點B(0,).直過點A與y軸交于點C,與拋物線的另一個交點是D.
(1)求拋物線與直線的解析式;
(2)設(shè)點P是直線AD下方的拋物線上一動點(不與點A、D重合),過點P作 y軸的平行線,交直線AD于點M,作DE⊥y軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在請求出點P的坐標(biāo);若不存在,請說明理由;
(3)在(2)的條件下,作PN⊥AD于點N,設(shè)△PMN的周長為m,點P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.
(1),;(2)存在,(2,-3)和(4,); (3),當(dāng)x=3時,m的最大值是15.
【解析】
試題分析:(1)將A,B兩點坐標(biāo)分別代入求出二次函數(shù)解析式;將A點坐標(biāo)代入求出直線解析式;
(2)首先假設(shè)出P,M點的坐標(biāo),進(jìn)而得出PM的長,將兩函數(shù)聯(lián)立得出D點坐標(biāo),進(jìn)而得出CE的長,利用平行四邊形的判定得出PM=CE,得出等式方程求出即可;
(3)利用勾股定理得出DC的長,進(jìn)而根據(jù)△PMN∽△CDE,得出兩三角形周長之比,求出m與x的函數(shù)關(guān)系,再利用配方法求出二次函數(shù)最值即可.
試題解析:(1)∵經(jīng)過點A(—2,0)和B(0,)
∴,解得.
∴拋物線的解析式是.
∵直線經(jīng)過點A(—2,0),∴,解得:.
∴直線的解析式是.
(2)存在.
設(shè)P的坐標(biāo)是(x,),則M的坐標(biāo)是(x,),
∴.
解方程得:或.
∵點D在第三象限,∴點D的坐標(biāo)是(8,).
由令x=0得點C的坐標(biāo)是(0,).
∴.
∵PM∥y軸,∴要使四邊形PMEC是平行四邊形,必有PM=CE,即.
解這個方程得:x1=2,x2=4.
當(dāng)x=2時,y=—3; 當(dāng)x=4時,y=.
∴直線AD上方的拋物線上存在這樣的點P,使四邊形PMEC是平行四邊形,點P的坐標(biāo)是(2,-3)和(4,).
(3)在Rt△CDE中,DE=8,CE=6 由勾股定理得:DC=10.
∴△CDE的周長是24.
∵PM∥y軸,∴∠PMN=∠DCE.
∵∠PNM=∠DEC,∴△PMN∽△CDE.
∴,即.
化簡整理得:m與x的函數(shù)關(guān)系式是:.
∵<0,∴m有最大值,當(dāng)x=3時,m的最大值是15.
考點:1.二次函數(shù)綜合題;2.單動點問題;3.曲線上點的坐標(biāo)與方程的關(guān)系;4.平行四邊形的判定;5.勾股定理;6.相似三角形的判定和性質(zhì);7.由實際問題列函數(shù)關(guān)系式;8.二次函數(shù)的最值.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
10 |
10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com