已知:如圖,△ABC中,點(diǎn)D、E是邊AB上的點(diǎn),CD平分∠ECB,且.

(1)求證:△CED∽△ACD;
(2)求證:.

(1)證明見試題解析;(2)證明見試題解析.

解析試題分析:(1)由,容易得出△ACB∽△CDB,求出∠BCD=∠A,由CD平分∠ECB,得出∠DCE=∠A,得到結(jié)論;
(2)由△CED∽△ACD和△ACB∽△CDB即可得出結(jié)論.
試題解析:(1)∵,∴,∵∠B=∠B,∴△ACB∽△CDB,∴∠A=∠BCD,∵CD平分∠ECB,∴∠BCD=∠ECD,∴∠DCE=∠A,∵∠EDC=∠EDC,∴△CED∽△ACD;
(2)△ACB∽△CDB,∴,∵△CED∽△ACD,∴,∴.
考點(diǎn):相似三角形的判定與性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC是邊長為6cm的等邊三角形,動(dòng)點(diǎn)P,Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB,BC方向勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是1cm/s,點(diǎn)Q運(yùn)動(dòng)的速度是2cm/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),

解答下列問題:
(1)當(dāng)為何值時(shí),△BPQ為直角三角形;
(2)設(shè)△BPQ的面積為S(cm2),求S與的函數(shù)關(guān)系式;
(3)作QR∥BA交AC于點(diǎn)R,連結(jié)PR,當(dāng)為何值時(shí),△APR∽△PRQ ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC中,∠C=90°,BC=8cm,,點(diǎn)P從B點(diǎn)出發(fā),沿BC方向以2cm/m的速度移動(dòng),點(diǎn)Q從C出發(fā),沿CA方向以1cm/m的速度移動(dòng)。若P、Q同時(shí)分別從B、C出發(fā),經(jīng)過多少時(shí)間△CPQ與△CBA相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點(diǎn),連接AE、AC.

求證:(1)點(diǎn)F是DC上一點(diǎn),連接EF,交AC于點(diǎn)O(如圖1),△AOE∽△COF;
(2)若點(diǎn)F是DC的中點(diǎn),連接BD,交AE與點(diǎn)G(如圖2),求證:四邊形EFDG是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連結(jié)并延長交的延長線于點(diǎn)

(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,D、E兩點(diǎn)分別在AC、AB兩邊上,∠ABC=∠ADE,AB=7,AD=3,AE=2.7,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過點(diǎn)A作AP的垂線與CB的延長線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).

(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化.當(dāng)點(diǎn)M落在矩形ABCD外部時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平行四邊形中,為邊延長線上的一點(diǎn),且的黃金分割點(diǎn),即,于點(diǎn),已知,求的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案