【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.

1)若花園的面積為192m2, x的值;

2)若在P處有一棵樹與墻CDAD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

【答案】112m16m;(2195.

【解析】

試題(1)、根據(jù)AB=x可得BC=28x,然后根據(jù)面積列出一元二次方程求出x的值;(2)、根據(jù)題意列出Sx的函數(shù)關系熟,然后根據(jù)題意求出x的取值范圍,然后根據(jù)函數(shù)的性質(zhì)求出最大值.

試題解析:(1)、∵AB=xm,則BC=28﹣xm, ∴x28﹣x=187,

解得:x1=11,x2=17, 答:x的值為11m17m

(2)、∵AB=xm∴BC=28﹣x, ∴S=x28﹣x=﹣x2+28x=﹣x﹣142+196

P處有一棵樹與墻CD,AD的距離分別是16m6m

∵28-x≥16,x≥6 ∴6≤x≤12,

x=12時,S取到最大值為:S=﹣12﹣142+196=192,

答:花園面積S的最大值為192平方米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+cyx的部分對應值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列結論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當x<1時,函數(shù)值yx的增大而增大;④方程ax2+bx+c=0有一個根大于4,其中正確的結論有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于給定的一個二次函數(shù),其圖象沿x軸翻折后,得到的圖象所對應的二次函數(shù)稱為原二次函數(shù)的橫翻函數(shù).

(1)直接寫出二次函數(shù)y=2x2的橫翻函數(shù)的表達式.

(2)已知二次函數(shù)yx2+bx+c的圖象經(jīng)過點A(﹣3,1)、B(2,6).

①求b、c的值.

②求二次函數(shù)yx2+bx+c的橫翻函數(shù)的頂點坐標.

③若將二次函數(shù)yx2+bx+c的圖象位于A、B兩點間的部分(含AB兩點)記為G,則當二次函數(shù)y=﹣x2bxc+mG有且只有一個交點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC和DEC的面積相等,點E在BC邊上,DEAB交AC于點F,AB=12,EF=9,則DF的長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程(a+2)x2﹣2ax+a=0有兩個不相等的實數(shù)根x1和x2, 拋物線y=x2﹣(2a+1)x+2a﹣5與x軸的兩個交點分別為位于點(2,0)的兩旁,若|x1|+|x2|=2,則a的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.

(1)求證:D是BC的中點;

(2)求證:△BEC∽△ADC;

(3)若CE=5,BD=6.5,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DBC的中點,點EF分別在線段AD及其延長線上,且DE=DF.給出下列條件:

①BE⊥EC②BF∥CE;③AB=AC;

從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是 (只填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象中,王剛同學觀察得出了下面四條信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中錯誤的有(

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,以AB為直徑的⊙OBC于點D,交AC于點E,過點DDFAC于點F,交AB的延長線于點G.

(1)求證:DF是⊙O的切線;

(2)已知BD=2,CF=2,求AEBG的長.

查看答案和解析>>

同步練習冊答案