【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,則下 列結論中正確的個數(shù)有(

①4a+b=0;

②9a+3b+c<0;

若點A3y1),點By2),點C5y3)在該函數(shù)圖象上,則y1y3y2;

若方程a(x+1)(x﹣5)=﹣3的兩根為x1x2 , x1<x2 , x1<﹣1<5<x2

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】試題分析:對稱軸為直線x=2,則,則4a+b=0,則①正確;當x=3時函數(shù)值為正數(shù),即,則②錯誤;對于開口向下的函數(shù),離對稱軸越遠,則函數(shù)值越小,則,則③正確;根據(jù)函數(shù)圖像可知:當y=-3時, ,則④正確;故本題選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,,平分,,

(1);

(2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,BC8,點P由點B向點A運動,同時,點Q由點C出發(fā)沿線段AC的延長線運動,已知點PQ運動速度相等,點Q與線段BC相交于點D,過點PPEAQ,交BC于點E

1)如圖1,求證:DCE中點;

2)如圖2,過點PPFBC,垂足為點F,在P、Q的運動過程中,請判斷DF的長度是否為定值;若是,請求出DF的長度;若否,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,A=40°,B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為調查本校學生固末平均每天做作業(yè)所用時間的情況,隨機調查了50名同字,如圖是根據(jù)調查所得數(shù)據(jù)繪制的統(tǒng)計圖的一部分.請根據(jù)以上信息,解答下列問題

1)請你補全條形統(tǒng)計圖

2)在這次調查的數(shù)據(jù)中,做作業(yè)所用時間的眾數(shù)是 小時,中位數(shù)是 小時,平均數(shù)是 小時;

3)若該校共有2000名學生,根據(jù)以上調查結果估計該校全體學生每天組作業(yè)時間在3小時內(含3小時)的同學共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.

(1)甲、乙兩種套房每套提升費用各多少萬元?

(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平面直角坐標系中,A點坐標為(0,1),ABBC,∠ABC90°,CDx軸.

1)填空:B點坐標為   ,C點坐標為   

2)若點P是直線CD上第一象限上一點且△PAB的面積為6.5,求P點的坐標;

3)在(2)的條件下點Mx軸上線段OD之間的一動點,當△PAM為等腰三角形時,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,BD=DC,∠ABD=∠ACD,求證:AD平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】太原雙塔寺又名永祚寺,是國家級文物保護單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為文筆雙塔,是太原的標志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標桿CD,這時地面上的點E,標桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC4米,將標桿CD向后平移到點C處,這時地面上的點F,標桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG6米,GC53米.

請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB

查看答案和解析>>

同步練習冊答案