已知:拋物線(a≠0)的頂點M的坐標為(1,-2)與y軸交于點C(0,),與x軸交于A、B兩點(AB的左邊).

(1)求此拋物線的表達式;

(2)點P是線段OB上一動點(不與點B重合),點Q在線段BM上移動且∠MPQ=45°,設線段OPx,MQ1,求y1x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)①在(2)的條件下是否存在點P,使△PQBPB為底的等腰三角形,若存在試求點Q的坐標,若不存在說明理由;

②在(1)中拋物線的對稱軸上是否存在點F,使△BMF是等腰三角形,若存在直接寫出所有滿足條件的點F的坐標.

 

【答案】

(1)(2)(0≤x<3)(3)①存在,Q的坐標為(2,1)②F1(1,0),F2(1,),F3(1,),F4(1,2).

【解析】解:(1)∵拋物線的頂點為M(1,﹣2)可設,

由點(0,)得:

.

.      ……………………3分

(2)在中由y=0得

解得:

A為(-1,0),B為(3,0)                 ……………………4分

M(1,-2)

∴∠MBO=45°,MB

∴∠MPQ=45°

MBO=∠MPQ

又∵∠M=∠M

∴△MPQ∽△MPB                             ……………………5分

(0≤x<3).  

…………………………7分(自變量取值范圍1分)

(3)①存在點Q,使QPQB,即△PQB是以PB為底的等腰三角形,作PB的垂直平分線交BMQ,則QPQB.

∴∠QPB=∠MBP=45°

又∵∠MPQ=45°,

∴此時MPx

P為(1,0),     

PB=2.

Q的坐標為(2,1).                 …………………………9分

F1(1,0),F2(1,),F3(1,),F4(1,2).

………………………………11分

(1)設拋物線的表達式為y=a(x-1)2-2,將點C的坐標代入即可得出答案;

(2)先證明△MPQ∽△MPB,根據(jù)相似的性質(zhì)列等式,求y1與x的函數(shù)關(guān)系式;

(3)①假設存在滿足條件的P點,根據(jù)條件△PQB是PB為底的等腰三角形,作PB的垂直平分線交BM于Q,QP=QB.求出P點和Q點坐標;②根據(jù)△BMF是等腰三角形,只要點F使得該三角形的兩邊相等即可.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知一拋物線與x軸的交點是A(-1,0)、B(m,0)且經(jīng)過第四象限的點C(1,n),而m+n=-1,mn=-12,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點,C是拋物線的頂點.
(1)用配方法求頂點C的坐標(用含m的代數(shù)式表示);
(2)“若AB的長為2
2
,求拋物線的解析式.”解法的部分步驟如下,補全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對稱軸與x軸交于點D(
 
,0)
∵拋物線的對稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=x2-6x+c的最小值為1,那么c的值是(  )
A、10B、9C、8D、7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個單位長度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對稱軸知識我們已經(jīng)知道:直線x=m,即為過點(m,0)平行于y軸的直線,類似地,直線y=m,即為過點(0,m)平行于x軸的直線、請結(jié)合圖象回答:當直線y=m與這兩條拋物線有且只有四個交點,實數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個單位長度,試回答(2)中的問題.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鹽城模擬)如圖a,在平面直角坐標系中,A(0,6),B(4,0)

(1)按要求畫圖:在圖a中,以原點O為位似中心,按比例尺1:2,將△AOB縮小,得到△DOC,使△AOB與△DOC在原點O的兩側(cè);并寫出點A的對應點D的坐標為
(0,-3)
(0,-3)
,點B的對應點C的坐標為
(-2,0)
(-2,0)
;
(2)已知某拋物線經(jīng)過B、C、D三點,求該拋物線的函數(shù)關(guān)系式,并畫出大致圖象;
(3)連接DB,若點P在CB上,從點C向點B以每秒1個單位運動,點Q在BD上,從點B向點D以每秒1個單位運動,若P、Q兩點同時分別從點C、點B點出發(fā),經(jīng)過t秒,當t為何值時,△BPQ是等腰三角形?

查看答案和解析>>

同步練習冊答案