【題目】閱讀材料,請回答下列問題

材料一:我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了三斜求積術(shù),即已知三角形的三邊長,求它的面積.用現(xiàn)代式子表示即為:S①(其中ab,c為三角形的三邊長,S為面積)而另一個文明古國古希臘也有求三角形面積的海倫公式;S……②(其中p

材料二:對于平方差公式:a2b2=(a+b)(ab

公式逆用可得:(a+b)(ab)=a2b2,

例:a2﹣(b+c2=(a+b+c)(abc

1)若已知三角形的三邊長分別為3、4、5,請試分別運用公式①和公式②,計算該三角形的面積;

2)你能否由公式①推導(dǎo)出公式②?請試試.

【答案】1)三角形的面積為6;(2)見解析.

【解析】

1)根據(jù)材料,代入公式即可求解;

2)根據(jù)平方差公式和完全平方公式即可推導(dǎo).

解:(1)設(shè)a3,b4,c5,

∵32+42255225,

∴a2+b2c2,

a2b2144,

∴S6;

∵p6,

pa633pb642,pc651,

S

6

∴三角形的面積為6

2[a2b2﹣(2]

[]

[a+b2c2][c2﹣(ab2]

a+b+c)(a+bc)(a+cb)(b+ca

×2p2p2c)(2p2b)(2p2a

ppa)(pb)(pc

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們約定:對角線互相垂直的凸四邊形叫做“正垂形”.

(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有   ;

②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形   “正垂形”.(填“是”或“不是”)

(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時針方向排列的四個動點,AC與BD交于點E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當(dāng)≤OE≤時,求AC2+BD2的取值范圍;

(3)如圖2,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(點A在點C的左側(cè)),B是拋物線與y軸的交點,點D的坐標(biāo)為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4試直接寫出滿足下列三個條件的拋物線的解析式;

; ②; ③“正垂形”ABCD的周長為12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點△ABC(頂點在網(wǎng)格線的交點上)的頂點A、C的坐標(biāo)分別為A(﹣3,4)C(0,2)

(1)請在網(wǎng)格所在的平面內(nèi)建立平面直角坐標(biāo)系,并寫出點B的坐標(biāo);

(2)畫出△ABC關(guān)于原點對稱的圖形△A1B1C1;

(3)求△ABC的面積;

(4)在x軸上存在一點P,使PA+PB的值最小,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶假期期間,某單位8名領(lǐng)導(dǎo)和320名員工集體外出進行素質(zhì)拓展活動,準(zhǔn)備租用45座大車或30座小車.若租用2輛大車3輛小車共需租車費1700元;若租用3輛大車2輛小車共需租車費1800

1)求大、小車每輛的租車費各是多少元?

2)若每輛車上至少要有一名領(lǐng)導(dǎo),每個人均有座位,且總租車費用不超過3100元,求最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售某種品牌的手機,每部進貨價為2500.市場調(diào)研表明:當(dāng)銷售價為2900元時,平均每天能售出8部;而當(dāng)銷售價每降低50元時,平均每天就能多售出4.

(1)當(dāng)售價為2800元時,這種手機平均每天的銷售利潤達到多少元?

(2)若設(shè)每部手機降低x,每天的銷售利潤為y,試寫出yx之間的函數(shù)關(guān)系式.

(3)商場要想獲得最大利潤,每部手機的售價應(yīng)訂為為多少元?此時的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,點PCD的中點,∠BCD=60°,射線APBC的延長線于點E,射線BPDE于點K,點O是線段BK的中點.

1)求證:△ADP≌△ECP;

2)若BP=nPK,試求出n的值;

3)作BMAE于點M,作KNAE于點N,連結(jié)MONO,如圖2所示,請證明△MON是等腰三角形,并直接寫出∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xoy中,點Mx軸的正半軸上,Mx軸于A、B兩點,交y軸于C、D兩點,且C為AE的中點,AEy軸于G點,若點A的坐標(biāo)為(-1,0),AE=4

(1)求點C的坐標(biāo);

(2)連接MG、BC,求證:MGBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個盒子里有完全相同的三個小球,球上分別標(biāo)上數(shù)字-1、1、2.隨機摸出一個小球(不放回),其數(shù)字記為p,再隨機摸出另一個小球,其數(shù)字記為q,則p,q使關(guān)于x的方程x2+px+q=0有實數(shù)根的概率是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案