【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1,y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距 千米;
(2)求兩小時后,貨車離C站的路程y2與行駛時間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車何時相遇?
【答案】(1)440千米;(2)y2=40x﹣80(x≥2);(3)客、貨兩車經(jīng)過4.4小時相遇.
【解析】
試題分析:(1)由題意可知:B、C之間的距離為80千米,A、C之間的距離為360千米,所以A,B兩地相距360+80=440千米;
(2)根據(jù)貨車兩小時到達(dá)C站,求得貨車的速度,進(jìn)一步求得到達(dá)A站的時間,進(jìn)一步設(shè)y2與行駛時間x之間的函數(shù)關(guān)系式可以設(shè)x小時到達(dá)C站,列出關(guān)系式,代入點求得函數(shù)解析式即可;
(3)兩函數(shù)的圖象相交,說明兩輛車相遇,求得y1的函數(shù)解析式,與(2)中的函數(shù)解析式聯(lián)立方程,解決問題.
解:(1)填空:A,B兩地相距:360+80=440千米;
(2)由圖可知貨車的速度為80÷2=40千米/小時,
貨車到達(dá)A地一共需要2+360÷40=11小時,
設(shè)y2=kx+b,代入點(2,0)、(11,360)得
,
解得,
所以y2=40x﹣80(x≥2);
(3)設(shè)y1=mx+n,代入點(6,0)、(0,360)得
解得,
所以y1=﹣60x+360
由y1=y2得,40x﹣80=﹣60x+360
解得x=4.4
答:客、貨兩車經(jīng)過4.4小時相遇.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖兩個同心圓,大圓的半徑為5,小圓的半徑為1,若大圓的弦AB與小圓有公共點,則弦AB的取值范圍是( )
A.8≤AB≤10 B.8<AB≤10 C.4≤AB≤5 D.4<AB≤5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:如圖1,直線a,b被直線c所截,且∠1+∠2=180°.求證:a∥b.
(2)如圖2,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列變形正確的是( )
A.2÷8×=2÷(8×)
B.6÷(+)=6÷+6÷
C.(﹣8)×(﹣5)×0=40
D.(﹣2)××(﹣5)=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】判斷題
(1)不相交的兩條直線叫做平行線.( )
(2)在同一平面內(nèi),不相交的兩條射線是平行線.( )
(3)如果一條直線與兩條平行線中的一條平行, 那么它與另一條也互相平行.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)已知:a=﹣5,b=2時,求代數(shù)式a2﹣3b的值.
(2)當(dāng)a=﹣1,b=﹣3時,求代數(shù)式a2+2ab+b2的值
(3)已知:有理數(shù)m在原點右側(cè)并且和原點距離4個單位,a,b互為相反數(shù),且都不為零,c,d互為倒數(shù).求:2(a+b)﹣(﹣3cd)﹣m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張朋將連續(xù)10天引體向上的測試成績(單位:個)記錄如下:16,18,18,16,19,19,18,21,18,21.則這組數(shù)據(jù)的中位數(shù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com