分析 (1)證明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得PEPF的值;
(2)如答圖1所示,作輔助線,構(gòu)造直角三角形,證明△PME∽△PNF,并利用(1)的結(jié)論,求得PEPF的值;
(3)如答圖2所示,作輔助線,構(gòu)造直角三角形,首先證明△APM∽△PCN,求得PMPN的值;然后證明△PME∽△PNF,從而由PEPF求得PEPF的值.與(1)(2)問相比較,PEPF的值發(fā)生了變化.
解答 解:(1)∵矩形ABCD,
∴AB⊥BC,PA=PC;
∵PE⊥AB,BC⊥AB,
∴PE∥BC,
∴∠APE=∠PCF;
∵PF⊥BC,AB⊥BC,
∴PF∥AB,
∴∠PAE=∠CPF.
∵在△APE與△PCF中,
{∠PAE=∠CPFPA=PC∠APE=∠PCF,
∴△APE≌△PCF(ASA),
∴PE=CF.
在Rt△PCF中,PFCF=tan30°=√33,
∴PEPF=√3.
故答案為:√3.
(2)如答圖1,過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥BC于點(diǎn)N,則PM⊥PN.
0°~30°時
∵PM⊥PN,PE⊥PF,
∴∠EPM=∠FPN,
又∵∠PME=∠PNF=90°,
∴△PME∽△PNF,
∴PEPF=PMPN,
由(1)知,PMPN=√3,
∴PEPF=√3.
同理30°~60°時,
PEPF=√33;
(3)如答圖2,過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥BC于點(diǎn)N,則PM⊥PN,PM∥BC,PN∥AB.
∵PM∥BC,PN∥AB,
∴∠APM=∠PCN,∠PAM=∠CPN,
∴△APM∽△PCN,
∴PMCN=APPC=12,得CN=2PM.
在Rt△PCN中,PNCN=PN2PM=tan30°=√33,
∴PMPN=√32.
∵PM⊥PN,PE⊥PF,
∴∠EPM=∠FPN,
又∵∠PME=∠PNF=90°,
∴△PME∽△PNF,
∴PEPF=PMPN=√32.
點(diǎn)評 本題是幾何綜合題,考查了相似三角形的判定與性質(zhì)、矩形的性質(zhì)、全等三角形的判定與性質(zhì)、解直角三角形等知識點(diǎn).本題三問的解題思路是一致的:即都是直接或作輔助線構(gòu)造直角三角形,通過相似三角形或全等三角形解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年浙江省杭州市蕭山區(qū)戴村片八年級3月月考數(shù)學(xué)試卷(解析版) 題型:單選題
方程的解是()
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com