【題目】如圖,某小區(qū)門口的欄桿從水平位置AB繞固定點(diǎn)O旋轉(zhuǎn)到位置DC,已知欄桿AB的長(zhǎng)為3.5米,OA的長(zhǎng)為3米,點(diǎn)CAB的距離為0.3米,支柱OE的高為0.6米,那么欄桿端點(diǎn)D離地面的距離為____________

【答案】2.4

【解析】

DDGABG,過CCHABH,則DGCH,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

解:過DDGABG,過CCHABH
DGCH,
∴△ODG∽△OCH,
,
∵欄桿從水平位置AB繞固定點(diǎn)O旋轉(zhuǎn)到位置DC
CD=AB=3.5m,OD=OA=3m,CH=0.3m,
OC=0.5m,
,
DG=1.8m
OE=0.6m,
∴欄桿D端離地面的距離為1.8+0.6=2.4(m)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DBDC,

(1)求拋物線的函數(shù)表達(dá)式;

(2)△BCD的面積等于△AOC的面積的時(shí),求的值;

(3)(2)的條件下,若點(diǎn)M軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在中,,,點(diǎn)、分別是、的中點(diǎn),連接.

1)在圖①中,的值為______;的值為______.

2)若將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到,點(diǎn)、的對(duì)應(yīng)點(diǎn)為、,在旋轉(zhuǎn)過程中的大小是否發(fā)生變化?請(qǐng)僅就圖②的情形給出證明.

3)當(dāng)在旋轉(zhuǎn)一周的過程中,,,三點(diǎn)共線時(shí),請(qǐng)你直接寫出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( 。

A. 60B. 50C. 40D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝店在服裝銷售中發(fā)現(xiàn):進(jìn)貨價(jià)每件60元,銷售價(jià)每件100元的某服裝每天可售出20件,為了迎接新春佳節(jié),服裝店決定采取適當(dāng)?shù)拇黉N措施,擴(kuò)大銷售量,增加盈利.經(jīng)調(diào)查發(fā)現(xiàn):如果每件服裝降價(jià)1元,那么每天就可多售出2件.

1)如果服裝店想每天銷售這種服裝盈利1050元,同時(shí)又要使顧客得到更多的實(shí)惠,那么每件服裝應(yīng)降價(jià)多少元?

2)每件服裝降價(jià)多少元時(shí),服裝店每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,∠ACB=90°,延長(zhǎng)邊BA至點(diǎn)D,使AD=AC,聯(lián)結(jié)CD.

1)求∠D的正切值;

2)取邊AC的中點(diǎn)E,聯(lián)結(jié)BE并延長(zhǎng)交邊CD于點(diǎn)F,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC中,∠C=90°,點(diǎn)O在AC上,以AO為半徑的⊙O交AB于D, BD的垂直平分線交BD于F,交BC于E,連接DE.

(1)求證:DE是⊙O的切線;

(2)若B=30°,BC=且ADDF=12,求O的直徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點(diǎn)E為AB的中點(diǎn).

(1)求證:△ADC∽△ACB.

(2)若AD=2,AB=3,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對(duì)稱軸為,且過點(diǎn),有下列結(jié)論:①0;②0;③;④0.其中正確的結(jié)論是(

A.①③B.①④C.①②D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案