精英家教網 > 初中數學 > 題目詳情

如圖,E是正方形ABCD的邊CD上一點,連接AE,過A作AF⊥AE交CB的延長線于F,連接EF,取EF的中點P,連接AP、BP.
(1)若AB=2,∠DAE=30°,求四邊形ABCE的面積;
(2)求證:∠BPF=45°-∠BAP.

(1)解:∵正方形ABCD的邊AB=2,
∴AD=AB=2,
∵∠DAE=30°,
∴AE=2DE,
在Rt△ADE中,AD2+DE2=AE2,
即22+DE2=(2DE)2,
解得DE=
∴S四邊形ABCE=S正方形ABCD-S△ADE,
=22-××2,
=4-;

(2)證明:如圖,連接CP,
∵P是EF的中點,AF⊥AE,∠BCE=90°,
∴AP=EF,CP=EF,
∴AP=CP,
在△ABP和△CBP中,
,
∴△ABP≌△CBP(SSS),
∴∠ABP=∠CBP,∠BAP=∠BCP,
∵∠ABC=90°,
∴∠CBP=45°,
∵CP=FP=EF,
∴∠BFP=∠BCP,
∴∠BFP=∠BAP,
在△BFP中,∠BPF=∠CBP-∠BFP=45°-∠BAP.
分析:(1)根據正方形的四條邊都相等求出AD,再根據直角三角形30°角所對的直角邊等于斜邊的一半求出AE=2DE,然后在Rt△ADE中,利用勾股定理列式進行計算即可求出DE,然后根據
S四邊形ABCE=S正方形ABCD-S△ADE,然后列式計算即可得解;
(2)連接CP,根據直角三角形斜邊上的中線等于斜邊的一半可得AP=EF,CP=EF,然后求出AP=CP,然后利用“邊邊邊”證明△ABP和△CBP全等,根據全等三角形對應角相等可得∠ABP=∠CBP,∠BAP=∠BCP,再求出∠ABP=45°,根據等腰直角三角形的性質求出∠APF=90°,然后三角形的內角和等于180°列式整理即可得證.
點評:本題考查了正方形的性質,全等三角形的判定與性質,直角三角形斜邊上的中線等于斜邊的一半的性質,勾股定理,綜合題,但難度不大,(2)作輔助線構造出全等三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,F、G是垂足,若正方形ABCD周長為a,則EF+EG等于( 。
A、
1
4
a
B、
1
2
a
C、a
D、2a

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,已知△ABC中,AB=AC,點P是BC上的一點,PN⊥AC于點N,PM⊥AB于點M,CG⊥AB于點G點.
(1)則CG、PM、PN三者之間的數量關系是
 
;
(2)如圖②,若點P在BC的延長線上,則PM、PN、CG三者是否還有上述關系,若有,請說明理由,若沒有,猜想三者之間又有怎樣的關系,并證明你的猜想;
(3)如圖③,AC是正方形ABCD的對角線,AE=AB,點P是BE上任一點,PN⊥AB于點N,PM⊥AC于點M,猜想PM、PN、AC有什么關系;(直接寫出結論)
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

22、如圖,ABCD是正方形,P是對角線BD上一點,過P點作直線EF、GH分別平行于AB、BC,交兩組對邊于E、F、G、H,則四邊形PEDG,四邊形PHBF都是正方形,四邊形PEAH、四邊形PGCF都是矩形,設正方形PEDG的邊長是a,正方形PHBF的邊長是b. 請動手實踐并得出結論:
(1)請你動手測量一些線段的長后,計算正方形PEDG與正方形PHBF的面積之和以及矩形PEAH與矩形PGCF的面積之和.
(2)你能根據(1)的結果判斷a2+b2與2ab的大小嗎?
(3)當點P在什么位置時,有a2+b2=2ab?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖四邊形AOBC是正方形,點C的坐標是(4
2
,0),動點P、Q同時從點O出發(fā),點P沿著折線OACB的方向運動;點Q沿著折線OBCA的方向運動,設運動時間為t.
(1)求出經過O、A、C三點的拋物線的解析式.
(2)若點Q的運動速度是點P的2倍,點Q運動到邊BC上,連接PQ交AB于點R,當AR=3
2
時,請求出直線PQ的解析式.
(3)若點P的運動速度為每秒1個單位長度,點Q的運動速度為每秒2個單位長度精英家教網,兩點運動到相遇停止.設△OPQ的面積為S.請求出S關于t的函數關系式以及自變量t的取值范圍.
(4)判斷在(3)的條件下,當t為何值時,△OPQ的面積最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,AC是正方形ABCD的對角線,點O是AC的中點,點Q是AB上一點,連接CQ,DP⊥CQ于點E,交BC于精英家教網點P,連接OP,OQ;
求證:
(1)△BCQ≌△CDP;
(2)OP=OQ.

查看答案和解析>>

同步練習冊答案