精英家教網(wǎng)如圖,圖(2)是由圖(1)經(jīng)過(guò)相似變換后所得的像,則a=
 
分析:根據(jù)△DEF∽△ABC,得出邊的對(duì)應(yīng)關(guān)系,從而求出a.
解答:解:由題意可得:△DEF∽△ABC,則
AB
DE
=
BC
EF
=
AC
DF

將AB=4,BC=7,AC=5,DE=2,EF=3.5,DF=a代入,解得a=2.5.
點(diǎn)評(píng):本題主要考查了相似三角形的性質(zhì),對(duì)應(yīng)邊成比例.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,畫(huà)出了8個(gè)立體圖形.
(1)找出與圖②具有相同特征的圖形,并說(shuō)出相同特征是什么;
(2)找出其他具有相同特征的圖形,并說(shuō)明相同的特征是什么;

[思路探究]
(1)與圖②具有相同特征的有:
圖⑧與圖②,它們都是棱錐;
圖⑤與圖②,它們的水平截面都是五邊形;
圖①,④與圖②,它們都由六個(gè)面組成;
圖⑦,⑧與圖②,它們都是錐體;
圖①,④,⑤,⑧與圖②,它們都是由平面圍成的幾何體;等等.
(2)其他具有相同特征的圖形有:
圖③,⑥,⑦,它們都是帶曲面的幾何體;
圖③,⑦,它們至少有一個(gè)面是圓;
圖①,④,它們的六個(gè)面都是四邊形;等等.
你還能找出其他具有相同特征的圖形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

幾何模型:
條件:如圖1,A、B是直線l同旁的兩個(gè)定點(diǎn).

問(wèn)題:在直線l上確定一點(diǎn)P,使PA+PB的值最。
方法:作點(diǎn)A關(guān)于直線l的對(duì)稱點(diǎn)A′,連接A′B交l于點(diǎn)P,則PA+PB=A′B的值最小(不必證明).
模型應(yīng)用:
(1)如圖2,正方形ABCD的邊長(zhǎng)為2,E為AB的中點(diǎn),P是AC上一動(dòng)點(diǎn).連接BD,由正方形對(duì)稱性可知,B與D關(guān)于直線AC對(duì)稱.連接ED交AC于P,則PB+PE的最小值是
5
5

(2)如圖3,⊙O的半徑為2,點(diǎn)A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動(dòng)點(diǎn),求PA+PC的最小值是
2
3
2
3
;
(3)如圖4,∠AOB=45°,P是∠AOB內(nèi)一點(diǎn),PO=5,Q、R分別是OA、OB上的動(dòng)點(diǎn),求△PQR周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,圖中的七巧板是由7塊圖形砌成的正方形,如果砌成的正方形面積為1,則c,d,e,f的面積為( 。
A、
1
6
 ,
1
8
1
6
,
1
8
B、
1
16
,
1
8
,
1
16
, 
1
8
C、
1
16
 ,
1
4
 ,
1
16
,
1
4
D、
1
6
1
8
,
1
16
, 
1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圖(2)是由圖(1)經(jīng)過(guò)相似變換后所得的像,則a=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案