如圖,圖(2)是由圖(1)經(jīng)過相似變換后所得的像,則a=______.

解:由題意可得:△DEF∽△ABC,則
將AB=4,BC=7,AC=5,DE=2,EF=3.5,DF=a代入,解得a=2.5.
分析:根據(jù)△DEF∽△ABC,得出邊的對應(yīng)關(guān)系,從而求出a.
點評:本題主要考查了相似三角形的性質(zhì),對應(yīng)邊成比例.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圖(2)是由圖(1)經(jīng)過相似變換后所得的像,則a=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,畫出了8個立體圖形.
(1)找出與圖②具有相同特征的圖形,并說出相同特征是什么;
(2)找出其他具有相同特征的圖形,并說明相同的特征是什么;

[思路探究]
(1)與圖②具有相同特征的有:
圖⑧與圖②,它們都是棱錐;
圖⑤與圖②,它們的水平截面都是五邊形;
圖①,④與圖②,它們都由六個面組成;
圖⑦,⑧與圖②,它們都是錐體;
圖①,④,⑤,⑧與圖②,它們都是由平面圍成的幾何體;等等.
(2)其他具有相同特征的圖形有:
圖③,⑥,⑦,它們都是帶曲面的幾何體;
圖③,⑦,它們至少有一個面是圓;
圖①,④,它們的六個面都是四邊形;等等.
你還能找出其他具有相同特征的圖形嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

幾何模型:
條件:如圖1,A、B是直線l同旁的兩個定點.

問題:在直線l上確定一點P,使PA+PB的值最。
方法:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B的值最。ú槐刈C明).
模型應(yīng)用:
(1)如圖2,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連接BD,由正方形對稱性可知,B與D關(guān)于直線AC對稱.連接ED交AC于P,則PB+PE的最小值是
5
5

(2)如圖3,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值是
2
3
2
3

(3)如圖4,∠AOB=45°,P是∠AOB內(nèi)一點,PO=5,Q、R分別是OA、OB上的動點,求△PQR周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圖中的七巧板是由7塊圖形砌成的正方形,如果砌成的正方形面積為1,則c,d,e,f的面積為( 。
A、
1
6
 ,
1
8
,
1
6
1
8
B、
1
16
,
1
8
,
1
16
, 
1
8
C、
1
16
 ,
1
4
 ,
1
16
,
1
4
D、
1
6
,
1
8
1
16
, 
1
4

查看答案和解析>>

同步練習冊答案