【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線(xiàn)的交點(diǎn)的三角形)的頂點(diǎn),的坐標(biāo)分別為,.
(1)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)點(diǎn)到軸的距離是 ;
(3)請(qǐng)作出關(guān)于軸對(duì)稱(chēng)的;
(4)寫(xiě)出點(diǎn)的坐標(biāo) .
【答案】(1)見(jiàn)解析;(2)2;(3)見(jiàn)解析;(4)(2,0)
【解析】
(1)根據(jù)已知的點(diǎn)、的坐標(biāo)可建立平面直角坐標(biāo)系;
(2)由點(diǎn)到軸的距離是其縱坐標(biāo)的絕對(duì)值可得答案;
(3)分別作出三個(gè)頂點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn),再首尾順次連接即可得;
(4)根據(jù)所得可得點(diǎn)的坐標(biāo).
(1)建立的平面直角坐標(biāo)系如圖所示:
(2),
∴點(diǎn)到軸的距離為,
故答案為;
(3)如圖所示,即為所求;
(4)點(diǎn)的坐標(biāo)為,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),AC平分∠DAB,AD⊥CD于D.
(1)求證:直線(xiàn)CD是⊙O的切線(xiàn);
(2)若AB=10,sin∠ACD=,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)y=-2x+1與y軸交于點(diǎn)C,直線(xiàn)y=x+k(k≠0)與y軸交于點(diǎn)A,與直線(xiàn)y=-2x+1交于點(diǎn)B,設(shè)點(diǎn)B的橫坐標(biāo)為x0.
(1)如圖,若x0=-1.
①求點(diǎn)B的坐標(biāo)及k的值;
②求直線(xiàn)y=-2x+1、直線(xiàn)y=x+k與y軸所圍成的△ABC的面積;
(2)若-2<x0<-1,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知;如圖,在△ABC中,AB=BC,∠ABC=90度.F為AB延長(zhǎng)線(xiàn)上一點(diǎn),點(diǎn)E在BC上,BE=BF,連接AE、EF和CF.
(1)求證:AE=CF;(2)若∠CAE=30°,求∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:在以后你的學(xué)習(xí)中,我們會(huì)學(xué)習(xí)一個(gè)定理:直角三角形斜邊上的中線(xiàn)等于斜邊的一半,即:如圖1,在Rt△ABC中,∠ACB=90°,若點(diǎn)D是斜邊AB的中點(diǎn),則CD=AB.
靈活應(yīng)用:如圖2,△ABC中,∠BAC=90°,AB=3, AC=4,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連接BE, CE.
(1)求AD的長(zhǎng);
(2)判斷△BCE的形狀;
(3)求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好的了解中學(xué)生課外閱讀的情況,學(xué)校團(tuán)委將初一年級(jí)學(xué)生一學(xué)期閱讀課外書(shū)籍量分為A(3本以?xún)?nèi))、B(3——6本)、C(6——10本)、D(10本以上)四種情況進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖所給信息解答上列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中C所占的百分比是多少?
(2)請(qǐng)將折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)學(xué)校團(tuán)委欲從課外閱讀量在10本以上的同學(xué)中隨機(jī)邀請(qǐng)兩位參加學(xué)校舉辦的“書(shū)香致遠(yuǎn) 墨卷至恒”主題讀書(shū)日的形象大使,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求所選出的兩位同學(xué)恰好都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人同時(shí)從圓形跑道(圓形跑道的總長(zhǎng)小于700m)上一直徑兩端A,B相向起跑.第一次相遇時(shí)離A點(diǎn)100m,第二次相遇時(shí)離B點(diǎn)60m,則圓形跑道的總長(zhǎng)為( )
A.240mB.360mC.480mD.600m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無(wú)理數(shù),那么a=0且b=0.
運(yùn)用上述知識(shí),解決下列問(wèn)題:
(1)如果(a+2)﹣b+3=0,其中a、b為有理數(shù),那么a= ,b= ;
(2)如果2b﹣a﹣(a+b﹣4)=5,其中a、b為有理數(shù),求3a+2b的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n(m<n)是關(guān)于x的方程(x–a)(x–b)=2的兩根,若a<b,則下列判斷正確的是
A. a<m<b<n B. m<a<n<b
C. a<m<n<d D. m<a<b<n
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com