【題目】如圖,在平面直角坐標系xOy中,Ax軸上一點,以OA為直徑的作半圓M,點BOA上一點,以OB為邊作OBDC交半圓MCD兩點.

1)連接AD,求證:DADB

2)若A點坐標為(20,0),點B的坐標是(160),求點C的坐標.

【答案】(1)詳見解析;(2)點B的坐標是(26

【解析】

(1)運用平行四邊形的性質、四邊形的內接圓以及等腰三角形的性質作答即可;

(2)DEx軸于點E,延長DCy軸于點F,連接MD,構造直角三角形,運用勾股定理解答即可.

1)證明:∵四邊形OBDC是平行四邊形

∴∠COBD

∵四邊形OADC內接于M

∴∠C+A180°

OBD+ABD180°

∴∠AABD

DADB

2)作DEx軸于點E,延長DCy軸于點F,連接MD,AE=BE=2,

∴MD=MA=10,ME=8

在Rt△MDE中,由勾股定理可得DE=6

BD=OC,CF=DE=6

OCFDBE (HL)

CFBE=2

故點B的坐標是(2,6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一直角坐標系中,函數(shù)ymxm和函數(shù)ymx22x2 (m是常數(shù),且m≠0)的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

(已有經驗)

我們已經研究過作一個圓經過兩個已知點,也研究過作一個圓與已知角的兩條邊都相切,尺規(guī)作圖如圖所示:

(遷移經驗)

1)如圖①,已知點M和直線l,用兩種不同的方法完成尺規(guī)作圖:求作⊙O,使⊙OM點,且與直線l相切.(每種方法作出一個圓即可,保留作圖痕跡,不寫作法)

(問題解決)

如圖②,在RtABC中,∠C90°,AC8,BC6

2)已知⊙O經過點C,且與直線AB相切.若圓心OABC的內部,則⊙O半徑r的取值范圍為

3)點D是邊AB上一點,BDm,請直接寫出邊AC上使得∠BED為直角時點E的個數(shù)及相應的m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,AB、BC是半徑為O內的兩條弦,且AB=6,BC=8.(1)若∠ABC=90°,則=________;(2)若∠ABC=120°,則=______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在4×4的正方形網格中,△ABC和△A'B'C'的頂點都在邊長為1的小正方形的格點上.

1)填空:∠BAC °,AB ;

2)判斷:△ABC和△A'B'C這兩個三角形相似嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,AC是弦,D是弧的中點,過點DDEACAC的延長線于點E

1)求證:DEO的切線;

2)當AB10,AC時,求弧的長;

3)當AB20時,直接寫出ABC面積最大時,點D到直徑AB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=(  )

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明利用函數(shù)與不等式的關系,對形如(為正整數(shù))的不等式的解法進行了探究.

(1)下面是小明的探究過程,請補充完整:

①對于不等式,觀察函數(shù)的圖象可以得到如表格:

的范圍

的符號

+

由表格可知不等式的解集為

②對于不等式,觀察函數(shù)的圖象可以得到如表表格:

的范圍

的符號

+

+

由表格可知不等式的解集為

③對于不等式,請根據(jù)已描出的點畫出函數(shù)(x+1)的圖象;

觀察函數(shù)的圖象補全下面的表格:

的范圍

的符號

+

   

   

由表格可知不等式的解集為

……

小明將上述探究過程總結如下:對于解形如(為正整數(shù))的不等式,先將按從大到小的順序排列,再劃分的范圍,然后通過列表格的辦法,可以發(fā)現(xiàn)表格中的符號呈現(xiàn)一定的規(guī)律,利用這個規(guī)律可以求這樣的不等式的解集.

(2)請你參考小明的方法解決下列問題:

①不等式的解集為

②不等式的解集為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,P是對角線AC上的一點,連結DP并延長交AB于點E,交CB的延長線于點F.若DP=3,EF=,則PE的長是(  )

A. B. C. 2 D.

查看答案和解析>>

同步練習冊答案