【題目】如圖,在平面直角坐標系xOy中,A為x軸上一點,以OA為直徑的作半圓M,點B為OA上一點,以OB為邊作□OBDC交半圓M于C,D兩點.
(1)連接AD,求證:DA=DB;
(2)若A點坐標為(20,0),點B的坐標是(16,0),求點C的坐標.
【答案】(1)詳見解析;(2)點B的坐標是(2,6)
【解析】
(1)運用平行四邊形的性質、四邊形的內接圓以及等腰三角形的性質作答即可;
(2) 作DE⊥x軸于點E,延長DC交y軸于點F,連接MD,構造直角三角形,運用勾股定理解答即可.
(1)證明:∵四邊形OBDC是平行四邊形
∴∠C=∠OBD
∵四邊形OADC內接于⊙M
∴∠C+∠A=180°
∵∠OBD+∠ABD=180°
∴∠A=∠ABD
∴DA=DB
(2)作DE⊥x軸于點E,延長DC交y軸于點F,連接MD,則AE=BE=2,
∴MD=MA=10,ME=8
在Rt△MDE中,由勾股定理可得DE=6
∵BD=OC,CF=DE=6
∴△OCF≌△DBE (HL)
∴CF=BE=2
故點B的坐標是(2,6)
科目:初中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2 (m是常數(shù),且m≠0)的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(已有經驗)
我們已經研究過作一個圓經過兩個已知點,也研究過作一個圓與已知角的兩條邊都相切,尺規(guī)作圖如圖所示:
(遷移經驗)
(1)如圖①,已知點M和直線l,用兩種不同的方法完成尺規(guī)作圖:求作⊙O,使⊙O過M點,且與直線l相切.(每種方法作出一個圓即可,保留作圖痕跡,不寫作法)
(問題解決)
如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=6.
(2)已知⊙O經過點C,且與直線AB相切.若圓心O在△ABC的內部,則⊙O半徑r的取值范圍為 .
(3)點D是邊AB上一點,BD=m,請直接寫出邊AC上使得∠BED為直角時點E的個數(shù)及相應的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,AB、BC是半徑為的⊙O內的兩條弦,且AB=6,BC=8.(1)若∠ABC=90°,則=________;(2)若∠ABC=120°,則=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在4×4的正方形網格中,△ABC和△A'B'C'的頂點都在邊長為1的小正方形的格點上.
(1)填空:∠BAC= °,AB= ;
(2)判斷:△ABC和△A'B'C這兩個三角形相似嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,D是弧的中點,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)當AB=10,AC=時,求弧的長;
(3)當AB=20時,直接寫出△ABC面積最大時,點D到直徑AB的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明利用函數(shù)與不等式的關系,對形如(為正整數(shù))的不等式的解法進行了探究.
(1)下面是小明的探究過程,請補充完整:
①對于不等式,觀察函數(shù)的圖象可以得到如表格:
的范圍 | ||
的符號 | + | ﹣ |
由表格可知不等式的解集為.
②對于不等式,觀察函數(shù)的圖象可以得到如表表格:
的范圍 | |||
的符號 | + | ﹣ | + |
由表格可知不等式的解集為 .
③對于不等式,請根據(jù)已描出的點畫出函數(shù)(x+1)的圖象;
觀察函數(shù)的圖象補全下面的表格:
的范圍 | ||||
的符號 | + | ﹣ |
|
|
由表格可知不等式的解集為 .
……
小明將上述探究過程總結如下:對于解形如(為正整數(shù))的不等式,先將按從大到小的順序排列,再劃分的范圍,然后通過列表格的辦法,可以發(fā)現(xiàn)表格中的符號呈現(xiàn)一定的規(guī)律,利用這個規(guī)律可以求這樣的不等式的解集.
(2)請你參考小明的方法解決下列問題:
①不等式的解集為 .
②不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,P是對角線AC上的一點,連結DP并延長交AB于點E,交CB的延長線于點F.若DP=3,EF=,則PE的長是( )
A. B. C. 2 D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com