【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).

(1)分別求出這兩個(gè)函數(shù)的表達(dá)式;

(2)直接寫出不等式k1x+b的解集;

(3)M為線段PQ上一點(diǎn),且MNx軸于N,求△MON的面積最大值及對(duì)應(yīng)的M點(diǎn)坐標(biāo).

【答案】(1)y=,y=﹣2x+9;(2)當(dāng)x0x4時(shí),k1x+b;(3)當(dāng)x=時(shí),面積最大值為,M(,

【解析】

(1)首先把P(,8)代入反比例函數(shù)解析式中確定k2的值,得到反比例函數(shù)解析式;然后把Q(4,m)代入反比例函數(shù)確定m的值,再根據(jù)P,Q兩點(diǎn)坐標(biāo)利用待定系數(shù)法確定一次函數(shù)解析式;

(2)根據(jù)函數(shù)的圖象即可求得;

(3)設(shè)M(x,﹣2x+9),則ON=x,MN=﹣2X+9,根據(jù)三角形面積公式即可得到關(guān)于x的二次函數(shù),將其化為頂點(diǎn)式,即可得到函數(shù)的最大值,從而確定M點(diǎn)的坐標(biāo)

(1)∵點(diǎn)P(,8)在反比例函數(shù)圖象上,

8=

k2=4,

∴反比例函數(shù)的表達(dá)式為:,

Q(4,m)在反比例函數(shù)的圖象上,

m==1,

Q(4,1),

P(,8),Q(4,1)分別代入一次函數(shù)y=k1x+b中,

,

解得:k1=-2,b=9,

∴一次函數(shù)的表達(dá)式為y=﹣2x+9;

即反比例函數(shù)的表達(dá)式:,一次函數(shù)的表達(dá)式為:y=﹣2x+9;

(2)由圖象得:當(dāng)x<0<x<4時(shí),k1x+b≥

(3)設(shè)M(x,﹣2x+9),

ON=x,MN=﹣2X+9,

SMON=×ON×MN=x×(﹣2x+9)=﹣x2+x=﹣(x﹣2+,

∴當(dāng)x=時(shí),面積最大值為,

M(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,BC=CD=10AC=17,AD=9,則AB=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰與等腰,,,連接相交于點(diǎn),交于點(diǎn),交與點(diǎn).下列結(jié)論:①;②;③平分;④若,則.其中一定正確的結(jié)論的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點(diǎn)A為圓心,小于AC的長(zhǎng)為半徑作圓弧,分別交AB,ACE,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,以大于EF長(zhǎng)為半徑作圓弧,兩條弧交于點(diǎn)G,作射線AGCD于點(diǎn)H,若∠C=120°,則∠AHD=( 。

A. 120° B. 30° C. 150° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A地開往B地,甲車比乙車早出發(fā)2小時(shí),并且在途中休息了0.5小時(shí),休息前后速度相同,如圖是甲、乙兩車行駛的距離ykm)與時(shí)間xh)的函數(shù)圖象.解答下列問題:

1)圖中a的值為;

2)當(dāng)x1.5h)時(shí),求甲車行駛路程ykm)與時(shí)間xh)的函數(shù)關(guān)系式;

3)當(dāng)甲車行駛多長(zhǎng)時(shí)間后,兩車恰好相距40km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角中,,、的平分線交于點(diǎn).

1)求證:;

2)若的外角平分線以及的平分線交于點(diǎn),(1)結(jié)論是否成立?請(qǐng)?jiān)趫D中補(bǔ)全圖形,寫出結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)G,過點(diǎn)GEF BCABE,交ACF,過點(diǎn)GGD ACD,下列四個(gè)結(jié)論:①EF = BE+CF;②∠BGC= 90 °+A;③點(diǎn)G ABC各邊的距離相等;④設(shè)GD =mAE + AF =n,則SAEF=mn.其中正確的結(jié)論有(

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,若在水溫為時(shí),接通電源后,水溫和時(shí)間的關(guān)系如圖.開機(jī)加熱時(shí)每分鐘上升,加熱到,飲水機(jī)關(guān)機(jī)停止加熱,水溫開始下降,下降時(shí)水溫與開機(jī)后的時(shí)間成反比例關(guān)系.當(dāng)水溫降至,飲水機(jī)自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若上午開機(jī),則時(shí)能否喝到超過的水?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是( )

A.角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等

B.角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上

C.三角形三條角平分線的交點(diǎn)到三條邊的距離相等

D.以上均不正確

查看答案和解析>>

同步練習(xí)冊(cè)答案