【題目】如果一條拋物線軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.

(1)“拋物線三角形”一定是 三角形;

(2)若拋物線的“拋物線三角形”是等腰直角三角形,求的值;

(3)如圖,△是拋物線的“拋物線三角形”,是否存在以原點(diǎn)為對(duì)稱中心的矩形?若存在,求出過三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由.

【答案】(1)等腰(2)(3)存在

【解析】解:(1)等腰

(2)拋物線的“拋物線三角形”是等腰直角三角形,

該拋物線的頂點(diǎn)滿足

(3)存在.

如圖,作關(guān)于原點(diǎn)中心對(duì)稱,

則四邊形為平行四邊形.

當(dāng)時(shí),平行四邊形為矩形.

,

∴△為等邊三角形.

,垂足為

,

設(shè)過點(diǎn)三點(diǎn)的拋物線,則

解之,得

所求拋物線的表達(dá)式為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在ABC中,為銳角,點(diǎn)D為射線BC上一動(dòng)點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.

1)如圖②,如果AB=AC,,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),猜想線段CF、BD的關(guān)系,并說明理由.

2)如圖③,如果ABAC,是銳角,點(diǎn)D在線段BC上,當(dāng)時(shí),必有CFBC(點(diǎn)CF不重合),請(qǐng)先在橫線上添加條件,再作證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( 。

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(﹣2,1),B(1,0),將線段AB繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BA′,則A′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AECF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.

1)求證:△AEM≌△CFN

2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,是邊上兩點(diǎn),且所在的直線垂直平分線段,平分,,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題的逆命題為假命題的是( )

A.如果一元二次方程沒有實(shí)數(shù)根,那么

B.線段垂直平分線上任意一點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.

C.如果兩個(gè)數(shù)相等,那么它們的平方相等.

D.直角三角形兩條直角邊的平方和等于斜邊的平方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善南寧市的交通現(xiàn)狀,市政府決定修建地鐵,甲、乙兩工程隊(duì)承包地鐵1號(hào)線的某段修建工作,從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的3倍;若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作10天完成.

求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

已知甲隊(duì)每天的施工費(fèi)用為萬元,乙隊(duì)每天的施工費(fèi)用為萬元,工程預(yù)算的施工費(fèi)用為500萬元,為縮短工期,擬安排甲、乙兩隊(duì)同時(shí)開工合作完成這項(xiàng)工程,那么工程預(yù)算的施工費(fèi)用是否夠用?若不夠用,需增加多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱的底面半徑為,圓柱高,是底面直徑,求一只螞蟻從點(diǎn)出發(fā)沿圓柱表面爬行到點(diǎn)的最短路線,小明設(shè)計(jì)了兩條路線:

路線1:高線底面直徑,如圖所示,設(shè)長(zhǎng)度為

路線2:側(cè)面展開圖中的線段,如圖所示,設(shè)長(zhǎng)度為

請(qǐng)按照小明的思路補(bǔ)充下面解題過程:

1)解:

2)小明對(duì)上述結(jié)論有些疑惑,于是他把條件改成:“圓柱底面半徑為,高”繼續(xù)按前面的路線進(jìn)行計(jì)算.(結(jié)果保留

①此時(shí),路線1__________.路線2_____________

②所以選擇哪條路線較短?試說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案