精英家教網 > 初中數學 > 題目詳情

【題目】根據某網站調查,2019年網民最關注的熱點話題分別是:消費、教育、環(huán)保、反腐及其他共五類,根據調查的部分相關數據繪制的統(tǒng)計圖如圖:

根據以上信息解答下列問題:

1)請補全條形圖,并在圖中標明相應數據.

2)若某市中心城區(qū)約有90萬人口,請你估計該市中心城區(qū)最關注教育問題的人數約有多少萬人?

3)據統(tǒng)計,2017年網民最關注教育問題的人數所占百分比約為10%,則從2017年到2019年關注該問題網民數的年平均增長率約為多少?(已知2017~2019年每年接受調查的網民人數相同,

【答案】1)補全條形圖,見解析;(2)估計該市中心城區(qū)最關注教育問題的人數約有22.5萬人;(3)從2017年到2019年關注該問題網民數的年平均增長率約為58%.

【解析】

1)先計算出調查的總人數,再計算出關注教育的人數,從而補全圖形;

2)利用樣本百分率估計總體即可得到答案;

3)設從2017年到2019年關注該問題網民數的年平均增長率為,列出一元二次方程求解即可.

解:(1)調查的總人數是:(人),

關注教育的人數是:(人).

補全圖形如下:

2(萬人);

3)設從2017年到2019年關注該問題網民數的年平均增長率為

由題意得,

解得(不合題意,舍去).

答:從2017年到2019年關注該問題網民數的年平均增長率約為58%.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,扇形OAB的半徑為4,∠AOB90°,P是半徑OB上一動點,Q上一動點.

1)連接AQBQ、PQ,則∠AQB的度數為   ;

2)當POB中點,且PQOA時,求的長;

3)如圖2,將扇形OAB沿PQ對折,使折疊后的恰好與半徑OA相切于點C.若OP3,求點O到折痕PQ的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線,頂點為點,拋物線與軸交于點(點在點的左側),與軸交于點

1)若拋物線經過點時,求此時拋物線的解析式;

2)直線與拋物線交于、兩點,若,請求出的取值范圍;

3)如圖,若直線軸于點,請求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點E是正方形ABCDCD上任意點,以DE為邊作正方形DEFG,連接BF.點M是線段BF中點,射線EMBC交于點H,連接CM

(1)請直接寫出CMEM的數量關系和位置關系:__________;

(2)把圖1中的正方形DEFG繞點D順時針旋轉90°,此時點E、G恰好分別落在線段AD、CD上,如圖2所示,其他條件不變,(1)中的結論是否成立,請說明理由.

(3)DG,AB4

①把圖1中的正方形DEFG繞點D順時針旋轉45°,此時點F恰好落在線段CD上,連接EM,如圖3所示,其他條件不變,計算EM的長度;

②若把圖1中的正方形DEFG繞點D順時針旋轉一周,請直接寫出EM的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABOC的頂點A0,2),點B(﹣4,0),點O為坐標原點,點C在第一象限,若將△AOB沿x軸向右運動得到△EFG(點A、O、B分別與點E、F、G對應),運動速度為每秒2個單位長度,邊EFOC于點P,邊EGOA于點Q,設運動時間為t0t2)秒.

1)在運動過程中,線段AE的長度為   (直接用含t的代數式表示);

2)若t1,求出四邊形OPEQ的面積S;

3)在運動過程中,是否存在四邊形OPEQ為菱形?若存在,直接寫出此時四邊形OPEQ的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,AB直徑,BC于點F,且交于點E,且∠AEC=ODB.

1)判斷直線的位置關系,并給出證明;

2)當時,求的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時間后,到達位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某花店用3600元按批發(fā)價購買了一批花卉.若將批發(fā)價降低10%,則可以多購買該花卉20.市場調查反映,該花卉每盆售價25元時,每天可賣出25.若調整價格,每盆花卉每漲價1元,每天要少賣出1.

1)該花卉每盆批發(fā)價是多少元?

2)若每天所得的銷售利潤為200元時,且銷量盡可能大,該花卉每盆售價是多少元?

3)為了讓利給顧客,該花店決定每盆花卉漲價不超過5元,問該花卉一天最大的銷售利潤是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)與x軸交于點A(﹣2,0)、B40),與y軸交于點C,且OC2OA

1)該拋物線的解析式為   ;

2)直線ykx+lk0)與y軸交于點D,與直線BC交于點M,與拋物線上直線BC上方部分交于點P,設m,求m的最大值及此時點P的坐標;

3)若點D、P為(2)中求出的點,點Qx軸的一個動點,點N為坐標平面內一點,當以點P、D、Q、N為頂點的四邊形為矩形時,直接寫出點N的坐標.

查看答案和解析>>

同步練習冊答案