(1)已知二次函數(shù),請你化成的形式,并在直角坐標系中畫出的圖象;
(2)如果,是(1)中圖象上的兩點,且,請直接寫出、的大小關(guān)系;
(3)利用(1)中的圖象表示出方程的根來,要求保留畫圖痕跡,說明結(jié)果.
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內(nèi)部作Rt△AED,∠EAD=30°,∠AED=90°.
(1)求△AED的周長;
(2)若△AED以每秒2個單位長度的速度沿DC向右平行移動,得到△A0E0D0,當A0D0與BC重合時停止移動,設(shè)運動時間為t秒,△A0E0D0與△BDC重疊的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)如圖②,在(2)中,當△AED停止移動后得到△BEC,將△BEC繞點C按順時針方向旋轉(zhuǎn)α(0°<α<180°),在旋轉(zhuǎn)過程中,B的對應(yīng)點為B1,E的對應(yīng)點為E1,設(shè)直線B1E1與直線BE交于點P、與直線CB交于點Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某相宜本草護膚品專柜計劃在春節(jié)前夕促銷甲、乙兩款護膚品,根據(jù)市場調(diào)研,發(fā)現(xiàn)如下兩種信息:
信息一:銷售甲款護膚品所獲利潤y(元)與銷售量x(件)之間存在二次函數(shù)關(guān)系y=ax2+bx.在x=10時,y=140;當x=30時,y=360.
信息二:銷售乙款護膚品所獲利潤y(元)與銷售量x(件)之間存在正比例函數(shù)關(guān)系y=3x.請根據(jù)以上信息,解答下列問題;
(1)求信息一中二次函數(shù)的表達式;
(2)該相宜本草護膚品專柜計劃在春節(jié)前夕促銷甲、乙兩款護膚品共100件,請設(shè)計一個營銷方案,使銷售甲、乙兩款護膚品獲得的利潤之和最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在二次函數(shù)中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | 8 | 3 | 0 | -1 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
跳繩時,繩甩到最高處時的形狀是拋物線.正在甩繩的甲.乙兩名同學(xué)拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點O的水平距離為1米的點F處,繩子甩到最高處時剛好通過她的頭頂點E.以點O為原點建立如圖所示的平面直角坐標系, 設(shè)此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式 .
(2)如果小華站在OD之間,且離點O的距離為3米,當繩子甩到最高處時剛好通過他的頭頂,小華的身高為 ;
(3)如果身高為1.4米的小麗站在OD之間,且離點O的距離為t米, 繩子甩到最高處時超過她的頭頂,請結(jié)合圖像,寫出t的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在平面直角坐標系xoy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線經(jīng)過點A、B和D(4,).
(1)求拋物線的表達式.
(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設(shè)S=PQ2(cm2).
①試求出S與運動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當S取時,在拋物線上是否存在點R,使得以點P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.
(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD的兩邊長AB=18cm,AD=4cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1cm的速度勻速運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并在右圖中畫出函數(shù)的圖像;
(2)求△PBQ面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
二次函數(shù)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)寫出方程的兩個根.
(2)寫出不等式的解集.
(3)寫出隨的增大而減小的自變量的取值范圍.
(4)若方程有兩個不相等的實數(shù)根,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com