【題目】某校最近發(fā)布了新的學生午休方案,為了了解學生方案的了解程度,小明和小穎一起對該學校的學生進行了抽樣調査,小明將結果整理后繪制成條形統(tǒng)計圖(如圖)(A代表完全清楚B代表知道一些,C代表,完全不了解):

1)這次抽樣調查了______人;

2)小穎將調查結果繪制成扇形統(tǒng)計圖,那么扇形統(tǒng)計圖中C部分,對應的扇形的圓心角是多少度?

3)若該學校一共有1000名學生,則根據(jù)此次調查,完全清楚的學生大約有多少人?

【答案】(1)120(2)45°(3)375

【解析】

1)將三個類別人數(shù)相加即可得;

2)用360°乘以樣本中C類別人數(shù)占總人數(shù)的比例即可得;

3)用總人數(shù)乘以樣本中A類別人數(shù)所占比例可得.

1)這次抽樣調查的人數(shù)為45+60+15=120(人),

故答案為:120

2)對應的扇形的圓心角是360°×=45°;

3)根據(jù)此次調查,完全清楚的學生大約有1000×=375(人).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB>∠ABC.

(1)用直尺和圓規(guī)在∠ACB的內部作射線CM,使∠ACM=∠ABC(不要求寫作法,保留作圖痕跡);
(2)若(1)中的射線CM交AB于點D,AB=9,AC=6,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】120209月的日歷如圖1所示,用1×3的長方形框出3個數(shù).如果任意圈出一橫行左右相鄰的三個數(shù),設最小的數(shù)為x,用含x的式子表示這三個數(shù)的和為   ;如果任意圈出一豎列上下相鄰的三個數(shù),設最小的數(shù)為y,用含y的式子表示這三個數(shù)的和為   

2)如圖2,用一個2×2的正方形框出4個數(shù),是否存在被框住的4個數(shù)的和為96?如果存在,請求出這四個數(shù)中的最小的數(shù)字;如果不存在,請說明理由

3)如圖2,用一個3×3的正方形框出9個數(shù),在框出的9個數(shù)中,記前兩行共6個數(shù)的和為a1,最后一行3個數(shù)的和為a2.若|a1a2|6,請求出正方形框中位于最中心的數(shù)字m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.將△ABC向左平移2格,再向上平移4格.

(1)請在圖中畫出平移后的△ABC

(2)再在圖中畫出△ABC的高CD

(3)

(4)在右圖中能使的格點P的個數(shù)有 個(點P異于A) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:cos21°+cos22°+cos23°+…+cos289°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在杭州西湖風景游船處,如圖,在離水面高度為5m的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為13m,此人以0.5m/s的速度收繩.10s后船移動到點D的位置,問船向岸邊移動了多少m?(假設繩子是直的,結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,M是直角邊AC上一點,MN⊥AB于點N,AN=3,AM=4,求cosB的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進園需購買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為千克),在甲園所需總費用為),在乙園所需總費用為),、之間的函數(shù)關系如圖所示,折線OAB表示之間的函數(shù)關系.

(1)甲采摘園的門票是 元,兩個采摘園優(yōu)惠前的草莓單價是每千克 元;

(2)當>10時,求的函數(shù)表達式;

(3)游客在春節(jié)期間采摘多少千克草莓時,甲、乙兩家采摘園的總費用相同.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列幾何體中,其主視圖不是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案