【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:(1)4a+2b+c<0;(2)方程ax2+bx+c=0兩根都大于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過(guò)第二象限.其中正確的個(gè)數(shù)是( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
由圖可知,x=2時(shí)函數(shù)值小于0,故(1)正確,函數(shù)與x軸的交點(diǎn)為x=1.x=3,都大于0,故(2)正確 ,由圖像知(3)錯(cuò)誤,由圖象開(kāi)口向上,a>0,與y軸交于正半軸,c>0,對(duì)稱(chēng)軸x=﹣=1,故b<0,bc<0,即可判斷一次函數(shù)y=x+bc的圖象.
①由x=2時(shí),y=4a+2b+c,由圖象知:y=4a+2b+c<0,故正確;
②方程ax2+bx+c=0兩根分別為1,3,都大于0,故正確;
③當(dāng)x<2時(shí),由圖象知:y隨x的增大而減小,故錯(cuò)誤;
④由圖象開(kāi)口向上,a>0,與y軸交于正半軸,c>0,x=﹣=1>0,∴b<0,
∴bc<0,∴一次函數(shù)y=x+bc的圖象一定過(guò)第一、三、四象限,故正確;
故正確的共有3個(gè),
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推進(jìn)節(jié)能減排,發(fā)展低碳經(jīng)濟(jì),某市“用電大戶(hù)”用480萬(wàn)元購(gòu)得“變頻調(diào)速技術(shù)”后,進(jìn)一步投入資金1520萬(wàn)元購(gòu)買(mǎi)配套設(shè)備,以提高用電效率達(dá)到節(jié)約用電的目的.已知該“用電大戶(hù)”生產(chǎn)的產(chǎn)品“草甘磷”每件成本費(fèi)為40元.經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷(xiāo)售單價(jià),需定在100元到300元之間較為合理.當(dāng)銷(xiāo)售單價(jià)定為100元時(shí),年銷(xiāo)售量為20萬(wàn)件;當(dāng)銷(xiāo)售單價(jià)超過(guò)100元,但不超過(guò)200元時(shí),每件新產(chǎn)品的銷(xiāo)售價(jià)格每增加10元,年銷(xiāo)售量將減少0.8萬(wàn)件;當(dāng)銷(xiāo)售單價(jià)超過(guò)200元,但不超過(guò)300元時(shí),每件產(chǎn)品的銷(xiāo)售價(jià)格在200元的基礎(chǔ)上每增加10元,年銷(xiāo)售量將減少1萬(wàn)件.設(shè)銷(xiāo)售單價(jià)為x(元),年銷(xiāo)售量為y(萬(wàn)件),年獲利為w(萬(wàn)元).(年獲利=年銷(xiāo)售額-生產(chǎn)成本-節(jié)電投資)
(1)直接寫(xiě)出y與x之間的函數(shù)關(guān)系式;
(2)求第一年的年獲利w與x間的函數(shù)關(guān)系式,并說(shuō)明投資的第一年,該“用電大戶(hù)”是盈利還是虧損?若盈利,最大利潤(rùn)是多少?若虧損,最少虧損是多少?
(3)若該“用電大戶(hù)”把“草甘磷”的銷(xiāo)售單價(jià)定在超過(guò)100元,但不超過(guò)200元的范圍內(nèi),并希望到第二年底,除去第一年的最大盈利(或最小虧損)后,兩年的總盈利為1842萬(wàn)元,請(qǐng)你確定此時(shí)銷(xiāo)售單價(jià).在此情況下,要使產(chǎn)品銷(xiāo)售量最大,銷(xiāo)售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問(wèn)卷調(diào)查的市民都只從以下五個(gè)種類(lèi)中選擇一類(lèi)),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖. 根據(jù)以上信息,回答下列問(wèn)題:
(1)參與本次問(wèn)卷調(diào)查的市民共有 人,其中選擇B類(lèi)的人數(shù)有 人;
(2)在扇形統(tǒng)計(jì)圖中,求A類(lèi)對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該市約有12萬(wàn)人出行,若將A,B,C這三類(lèi)出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).
種類(lèi) | A | B | C | D | E |
出行方式 | 共享單車(chē) | 步行 | 公交車(chē) | 的士 | 私家車(chē) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=AC,D為△ABC外一點(diǎn),且AD=AC,則∠BDC的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對(duì)稱(chēng)軸為經(jīng)過(guò)點(diǎn)(1,0)且垂直于x軸的直線(xiàn).給出四個(gè)結(jié)論:①abc>0;②當(dāng)x>1時(shí),y隨x的增大面減;③4a﹣2b+c>0;④3a+c>0.其中正確的結(jié)論是_____(寫(xiě)出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD為⊙O的直徑,BC為⊙O的切線(xiàn),切點(diǎn)為M,分別過(guò)A,D兩點(diǎn)作BC的垂線(xiàn),垂足分別為B,C,AD的延長(zhǎng)線(xiàn)與BC相交于點(diǎn)E.
(1)求證:△ABM∽△MCD;
(2)若AD=8,AB=5,求ME的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(0,3),B(3,0),C(4,3).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)求拋物線(xiàn)的頂點(diǎn)坐標(biāo)和對(duì)稱(chēng)軸;
(3)把拋物線(xiàn)向上平移,使得頂點(diǎn)落在x軸上,直接寫(xiě)出兩條拋物線(xiàn)、對(duì)稱(chēng)軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com