如圖1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的對(duì)稱中心,MN交AB于F,QM交AD于E.
1.求證:ME = MF.
2.如圖2,若將原題中的“正方形”改為“菱形”,其他條件不變,探索線段ME與線段MF的關(guān)系,并加以證明.
3.如圖3,若將原題中的“正方形”改為“矩形”,且AB = mBC,其他條件不變,探索線段ME與線段MF的關(guān)系,并說明理由.
4.根據(jù)前面的探索和圖4,你能否將本題推廣到一般的平行四邊形情況?若能,寫出推廣命題;若不能,請(qǐng)說明理由.
1.證明:過點(diǎn)M作MH⊥AB于H,MG⊥AD于G,連接AM
∵M是正方形ABCD的對(duì)稱中心,∴M是正方形ABCD對(duì)角線的交點(diǎn),
∴AM平分∠BAD,∴MH=MG
在正方形ABCD中,∠A=90°,∵∠MHA=∠MGA=90°∴∠HMG=90°,
在正方形QMNP,∠EMF=90°∴∠EMF=∠HMG.∴∠EMH=∠FMG,∵∠MHE=∠MGF,
∴△MHE≌△MGF,∴ME=MF.
2.ME=MF。證明:過點(diǎn)M作MH⊥AB于H,MG⊥AD于G,連接AM,
∵M(jìn)是菱形ABCD的對(duì)稱中心,∴M是菱形ABCD對(duì)角線的交點(diǎn),∴AM平分∠BAD,∴MH=MG,∵BC∥AD,∴∠B+∠BAD=180°,∵∠M=∠B,∴∠M+∠BAD=180°
又∠MHA=∠MGF=90°,在四邊形HMGA中,∠HMG+∠BAD=180°,∴∠EMF=∠HMG.
∴∠EMH=∠FMG,∵∠MHE=∠MGF,∴△MHE≌△MGF,∴ME=MF。
3.ME=mMF.證明:過點(diǎn)M作MH⊥AB于H,MG⊥AD于G,
在矩形ABCD中,∠A=∠B=90°∴∠EMF=∠B=90°,
又∵∠MHA=∠MGA=90°,在四邊形HMGA中,∴∠HMG=90°,
∴∠EMF=∠HMG,∴∠EMH=∠FMG.∵∠MHE=∠MGF,
∴△MHE∽△MGF,∴,
又∵M是矩形ABCD的對(duì)稱中心,∴M是矩形ABCD對(duì)角線的中點(diǎn)
∴MG∥BC,∴MG=BC.同理可得MH=AB,
∵AB= mBC∴ME=mMF。
4.平行四邊形ABCD和平行四邊形QMNP中,∠M=∠B,AB=mBD,
M是平行四邊形ABCD的對(duì)稱中心,MN交AB于F,AD交QM于E。
則ME=mMF
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com