【題目】某農(nóng)戶承包荒山若干畝種植臍橙,投資59000元種植臍橙果樹4000棵;今年臍橙總產(chǎn)量預測為60000千克,臍橙在市場上每千克售a元,在果園每千克售b元(ba).該農(nóng)戶將水果拉到市場出售平均每天出售2000千克,需4人幫忙,每人每天付工資100元,農(nóng)用車運費及其他各項稅費平均每天300元.

1)分別用a,b表示兩種方式出售水果的收入?

2)若a=2.5元,b=2元,且兩種出售水果方式都在相同的時間內(nèi)售完全部水果,請你通過計算說明選擇哪種出售方式較好?

3)該農(nóng)戶加強果園管理,力爭到明年純收入達到84000元,而且該農(nóng)戶采用了(2)中較好的出售方式出售,那么純收入增長率是多少(純收入=總收入﹣總支出)?

【答案】1)市場出售收入,果園出售收入=60000b;(2)選擇在市場上銷售更好;(3)純收入增長率=20%.

【解析】

1)市場收入=售價-人工費用-農(nóng)用車費用及其他各項稅費;果園銷售收入=售價;
2)將a、b的值代入計算,然后比較即可;
3)先求出今年的純收入,再根據(jù)增長率定義列式計算即可得解.

解:(1)市場出售收入

果園出售收入=60000b

2a=2.5元,b=2元時,

市場出售收入=60000a-21000=60000×2.5-21000=150000-21000=129000元,
果園出售收入=60000b=60000×2=120000元,
129 000120 000,
∴選擇在市場上銷售更好;

3)今年純收入=129 000-59 000=70 000,
∵明年純收入達到84000元,
∴純收入增長率=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵市民節(jié)約用電,小亮家所在地區(qū)規(guī)定:每戶居民如果一個月的用電量不超過度,那么這戶居民這個月只需交元電費;如果超過度,則這個月除了仍要交元的電費以外,超過的部分還要按每度元交電費.已知小亮家月份用電度,交電費元;月份用電度,交電費元.

1)請直接寫出小亮家月份超過度部分的用電量(用含的代數(shù)式表示);

2)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價.現(xiàn)在的售價為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價x(x為正整數(shù)),每月的銷量為y箱.

1)寫出yx中間的函數(shù)關(guān)系式和自變量的取值范圍;

2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點.若點DBC邊的中點,點M為線段EF上一動點,則CDM周長的最小值為( 。

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是⊙O的切線,B為切點,連接DO與⊙O交于點CAB為⊙O的直徑,連接CA,若∠D=30°,O的半徑為4.

(1) 求∠BAC的大;

(2) 求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1)在ABC中,∠BAC90°,ABAC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:DEBD+CE;

2)如圖(2)將(1)中的條件改為:在ABC中,ABACD、AE三點都在直線m上,并且有∠BDA=∠AEC=∠BACα,其中α為任意銳角或鈍角.請問結(jié)論DEBD+CE是否成立?如成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察表格:根據(jù)表格解答下列問題:

(l) a______,b_____,c_____;

(2) 在右圖的直角坐標系中畫出函數(shù)yax2bxc的圖象,并根據(jù)圖象,直接寫出當x取什么實數(shù)時,不等式ax2bxc > 3成立;

3)該圖象與x軸兩交點從左到右依次分別為A、B,與y軸交點為C,求過這三個點的外接圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,垂足為點DEFBC,垂足為點F,∠1+2=180°.請?zhí)顚憽?/span>CGD=CAB的理由.

解:因為ADBC,EFBC______ )

所以∠ADC=90°,∠EFD=90°______。

得∠ADC=EFD(等量代換),

所以ADEF______ )

得∠2+3=180°______。

由∠1+2=180°______。

得∠1=3______。

所以DGAB______。

所以∠CGD=CAB______。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

同步練習冊答案