已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E為邊BC上一點,且AE=DC.
(1)求證:四邊形AECD是平行四邊形;
(2)當(dāng)∠B=2∠DCA時,求證:四邊形AECD是菱形.

證明:(1)∵在等腰梯形ABCD中,AD∥BC,AB=DC,
∴∠B=∠DCB,
∵AE=DC,
∴AE=AB,
∴∠B=∠AEB,
∴∠DCB=∠AEB,
∴AE∥DC,
∴四邊形AECD為平行四邊形;

(2)∵AE∥DC,
∴∠EAC=∠DCA,
∵∠B=2∠DCA,∠B=∠DCB,
∴∠DCB=2∠DCA,
∴∠ECA=∠DCA,
∴∠EAC=∠ECA,
∴AE=CE,
∵四邊形AECD為平行四邊形,
∴四邊形AECD為菱形.
分析:(1)由等腰梯形的性質(zhì)(等腰梯形同一底上的角相等),可得∠B=∠DCB,又由等腰三角形的性質(zhì)(等邊對等角)證得∠DCB=∠AEB,即可得AE∥DC,則四邊形AECD為平行四邊形;
(2)根據(jù)平行線的性質(zhì),易得∠EAC=∠DCA,又由已知,由等量代換即可證得∠EAC=∠ECA,根據(jù)等角對等邊,即可得AE=CE,則四邊形AECD為菱形.
點評:此題考查了等腰梯形的性質(zhì)、平行四邊形的判定、菱形的判定以及等腰三角形的判定與性質(zhì).解題的關(guān)鍵是仔細識圖,應(yīng)用數(shù)形結(jié)合思想解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期相交線與平行線專項訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達B時,P、Q兩點同時停止

運動,設(shè)P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年河南省周口市初一下學(xué)期平移專項訓(xùn)練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當(dāng)Q到達B時,P、Q兩點同時停止

運動,設(shè)P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關(guān)系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當(dāng)DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

同步練習(xí)冊答案