如圖,點C在⊙O上,將圓心角∠AOB繞點O按逆時針方向旋轉到∠A′OB′,旋轉角為α(0°<α<180°).若∠AOB=30°,∠BCA′=40°,則∠α=________度.

110
分析:根據(jù)圓周角定理可求∠BOA′=2∠BC′A=80°,又已知∠AOB=30°,故∠α可求.
解答:∵∠BCA′=40°,∠AOB=30°,
∴∠BOA′=2∠BCA′=80°,
∴∠α=∠AOB+∠BOA′=110°.
點評:此題主要考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖所示,△ABC,△ADE為等腰直角三角形,∠ACB=∠AED=90°.
(1)如圖①,點E在AB上,點D與C重合,F(xiàn)為線段BD的中點.則線段EF與FC的數(shù)量關系是
EF=FC
;∠EFD的度數(shù)為
90°

(2)如圖②,在圖①的基礎上,將△ADE繞A點順時針旋轉到如圖②的位置,其中D、A、C在一條直線上,F(xiàn)為線段BD的中點.則線段EF與FC是否存在某種確定的數(shù)量關系和位置關系?證明你的結論;
(3)若△ADE繞A點任意旋轉一個角度到如圖③的位置,F(xiàn)為線段BD的中點,連接EF、FC,請你完成圖③,并直接寫出線段EF與FC的關系(無需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、附加題:
(1)計算-2+3的結果是
1

(2)如圖,點C在⊙O上,∠ACB=50°,則∠AOB=
100
°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D在AB上,DF交AC于點E,CF∥AB,AE=EC.
求證:AD=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

學習數(shù)學應該積極地參加到現(xiàn)實的、探索性的數(shù)學活動中去,努力地成為學習的主人.如圖,請你探究:隨著D點位置的變化,∠BDC與∠A的大小關系.(①、②問用“>”表示其關系,③、④、⑤問用“=”表示其關系)

(1)如圖①,點D在AC上(不同于A、C兩點),∠BDC與∠A的關系是
∠BDC>∠A
∠BDC>∠A
;
如圖②,點D在△ABC內部,∠BDC與∠A的關系是
∠BDC>∠A
∠BDC>∠A
;
如圖③,點D是∠ABC,∠ACB平分線的交點,此時∠BDC與∠A的關系是
∠BDC=90°-
1
2
∠A
∠BDC=90°-
1
2
∠A
;
如圖④,點D是∠ABC的平分線和∠ACB外角平分線的交點,∠BDC與∠A的關系是
∠D=
1
2
∠A
∠D=
1
2
∠A

如圖⑤,點D是∠ABC與∠ACB兩外角平分線的交點,∠BDC與∠A的關系是
∠BDC=90°-
1
2
∠A
∠BDC=90°-
1
2
∠A

(2)證明圖④的結論;
(3)證明圖⑤的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點D在AB上,直線DG交AF于點E.請從①DG∥AC,②AF平分∠BAC,③AD=DE中任選兩個作為條件,余下一個作為結論,構造一個真命題,并說明理由.已知:
①②
①②
,求證:
.(只須填寫序號)

查看答案和解析>>

同步練習冊答案