如圖,在平面直角坐標(biāo)系中,四邊形ABCD是正方形,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(0,2),反比例函數(shù)y=數(shù)學(xué)公式(x>0)的圖象經(jīng)過(guò)點(diǎn)D.
(1)求反比例函數(shù)的解析式;
(2)如果自變量x的取值范圍是0<x≤4,求y的取值范圍.

解:(1)作DE⊥x軸于點(diǎn)E.
∵正方形ABCD中,∠BAD=90°,
∴∠BAO+∠DAE=90°,
又∵直角△OAB中,∠AB0+∠BAO=90°,
∴∠ABO=∠DAE
又∵AB=DA,∠BOA=∠AED
∴△ABO≌△DAE,
∴DE=OA=1,AE=OB=2,
∴OE=OA+AE=1+2=3,
∴D的坐標(biāo)是(3,1),
把(3,1)代入y=,得:1=,解得:k=3,
則函數(shù)的解析式是:y=

(2)在y=中,當(dāng)x=4時(shí),y=,則y的取值范圍是:y≥
分析:(1)作DE⊥x軸于點(diǎn)E,易證△ABO≌△DAE,即可求得OE,DE的長(zhǎng),則D的坐標(biāo)可以得到,然后利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)在函數(shù)解析式中,求得當(dāng)x=4時(shí)函數(shù)值,然后根據(jù)反比例函數(shù)的性質(zhì)即可求得y的范圍.
點(diǎn)評(píng):本題是全等三角形的判定與性質(zhì),待定系數(shù)法求函數(shù)的解析式,以及反比例函數(shù)的性質(zhì)的綜合應(yīng)用,正確求得D的坐標(biāo)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案