【題目】惠民超市第一次用6000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的40件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)-進(jìn)價(jià))

甲種商品

乙種商品

進(jìn)價(jià)(元/件)

22

30

售價(jià)(元/件)

29

40

1)惠民超市購(gòu)進(jìn)甲、乙兩種商品各多少件?

2)惠民超市將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣完后一共可獲利潤(rùn)多少元?

3)惠民超市第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品每件降價(jià)1元銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤(rùn)比第一次獲得的總利潤(rùn)多570元,求第二次乙商品是按原價(jià)打幾折銷售?

【答案】1)惠民超市購(gòu)進(jìn)甲商品150件,乙商品90件 (2)一共可獲利潤(rùn)1950 元 (3)第二次乙商品是按原價(jià)打九折銷售

【解析】

1)設(shè)惠民超市購(gòu)進(jìn)甲商品x件,乙商品件,根據(jù)題意列出方程求解即可;

2)根據(jù)利潤(rùn)公式求解即可;

3)先求出第二次的利潤(rùn)總額,從而求得第二次乙商品的利潤(rùn),即可得到第二次乙商品的價(jià)格,即可的解第二次乙商品的折扣.

1)設(shè)惠民超市購(gòu)進(jìn)甲商品x件,乙商品件,由題意得

解得

故惠民超市購(gòu)進(jìn)甲商品150件,乙商品90件;

2(元);

3)第二次惠民超市購(gòu)進(jìn)甲商品150件,乙商品270件

第二次獲得的利潤(rùn)(元)

第二次甲商品的利潤(rùn)(元)

第二次乙商品的利潤(rùn)(元)

第二次乙商品的售價(jià)(元/件)

第二次乙商品的折扣

故第二次乙商品是按原價(jià)打九折銷售.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用直尺和圓規(guī)畫一個(gè)角等于已知角,是運(yùn)用了全等三角形的對(duì)應(yīng)角相等這一性質(zhì),其全等的依據(jù)是( )

ASAS BASA CAAS DSSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解家長(zhǎng)對(duì)學(xué)生在校帶手機(jī)現(xiàn)象的看法某校九年級(jí)興趣小組隨機(jī)調(diào)查了該校學(xué)生家長(zhǎng)若干名,并對(duì)調(diào)查結(jié)果進(jìn)行整理繪制如下不完整的統(tǒng)計(jì)圖

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題

(1)這次接受調(diào)查的家長(zhǎng)總?cè)藬?shù)為________人;

(2)在扇形統(tǒng)計(jì)圖中,很贊同所對(duì)應(yīng)的扇形圓心角的度數(shù)

(3)若在這次接受調(diào)查的家長(zhǎng)中,隨機(jī)抽出一名家長(zhǎng),恰好抽到無(wú)所謂的家長(zhǎng)概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形ABCD和正方形AEFG連接DG,BE。

(1)發(fā)現(xiàn)

當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖2,線段DGBE之間的數(shù)量關(guān)系是____________。直線DG與直線BE之間的位置關(guān)系是____________。

(2)探究

如圖3,若四邊形ABCD與四邊形AEFG都為矩形,AD=2AB,AG=2AE,證明直線DG⊥BE

(3)應(yīng)用

(2)情況下連結(jié)GE(點(diǎn)EAB上方),GEAB,AB=AE=1,則線段DG是多少?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:是銳角的兩條高,、分別是的中點(diǎn),若EF=6,.

1)證明:;

2)判斷的位置關(guān)系,并證明你的結(jié)論;

3)求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一張兩邊分別平行的紙條折成如圖所示,EF為折痕,EDBF于點(diǎn)G,且∠EFB=48°,則下列結(jié)論: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°;④∠DGF=96°,其中正確的個(gè)數(shù)有( )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,把△ABC向上平移3個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到△A′B′C′

⑴寫出A′、B′、C′的坐標(biāo);

⑵求出△ABC的面積;

⑶點(diǎn)Py軸上,且△BCP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù) y的圖象與一次函數(shù)ymxb的圖象交于兩點(diǎn)A1,3,Bn,1).

1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;

2)根據(jù)圖象,直接回答:當(dāng)x取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值;

3)連接AO、BO,求ABO的面積;

4)在y軸上存在點(diǎn)P,使AOP為等腰三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,學(xué)校有一塊長(zhǎng)方形空地,它的長(zhǎng)和寬的比是31,面積為363.

1)求該長(zhǎng)方形的長(zhǎng)和寬;

2)如圖所示,工人師傅要在這塊空地上設(shè)計(jì)一個(gè)圓形區(qū)域和四個(gè)扇形區(qū)域進(jìn)行綠化,其中四個(gè)扇形區(qū)域的半徑與中間圓形區(qū)域半徑相同,若綠化區(qū)域的總面積為,請(qǐng)你幫助工人師傅計(jì)算一下中間圓形區(qū)域的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案